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Abstract

Colour is an important visual cue widely used in computer vision in the last years.
Most of the methods developed so far aim to extract low-level colour features from
images and such information do not have a direct link to the high-level semantics that
humans use. The lack of this direct link, known as the semantic gap, is even more
significant for some applications such as image retrieval where users require systems
able to support queries in natural language or, at least, in a high-level language.
Hence, the main goal of this thesis is to make a further step in the way of reducing
the semantic gap in the task of giving names to colours in images.

The main contribution of this thesis is a parametric colour-naming model for
images. The problem is framed on the fuzzy set theory where each one of the 11 basic
colour categories (white, black, red, green, yellow, blue, brown, purple, pink, orange,
and grey) is characterized by a membership function.

Since the goal of such a model is to obtain the same name assignments as a human
observer would provide, a set of human judgements is needed as starting point for
the modelling process. To obtain such a data set we propose a methodology for
fuzzy psychophysical experiments and a set of fuzzy judgements are obtained. The
methodology and the results are validated by computing some usual statistics which
are compared to previous experiments to show the equivalence of the results obtained
with the new methodology and the ones from former experiments. The data set
obtained has been made available online on the Internet for the research community.

The analysis of the results from the experiment allows defining the properties that
the membership functions should fulfil. Several functions are proposed and evaluated
to achieve the final Triple-Sigmoid with Elliptical centre (TSE) model which provides
good fitting to the learning data and a categorization of the Munsell colour space
which is consistent with previous works. The result of the fitting process is the set of
parameters of the model which allows computing the membership of any given colour
sample to the 11 colour categories considered, with all the advantages of a parametric
implementation.

The last part of the thesis is devoted to analyse the conditions needed to apply the
model on real images under uncalibrated conditions where no information about the
acquisition conditions is known. This analysis shows that the model can work with an
acceptable error on computer vision applications where a perceptual representation of
colour information is needed. The model is tested in one of these applications on a real
problem where automatic image annotation is used for image retrieval. The results on
the experiments show the potentiality of the colour-naming model for different future
applications and open new research possibilities in this field.
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Resum

El color és una font d’informacioé visual molt important i ampliament utilitzada en
els darrers anys en la visi6 per computador. La majoria dels métodes desenvolupats
fins ara tenen com objectiu extreure caracteristiques de baix nivell de les imatges i
aquesta informaci6 no té un lligam directe amb la semantica d’alt nivell que utilitzem
els humans. La falta d’aquesta relacié directa, que es coneix com ‘semantic gap’,
és encara més significativa per algunes aplicacions com la recuperacié d’imatges de
bases de dades on els usuaris requereixen sistemes que permetin realitzar cerques
en llenguatge natural o almenys en un llenguatge d’alt nivell. Per tant, el principal
objectiu d’aquesta tesi és fer un avang en la linia de reduir el ‘semantic gap’ en la
tasca de donar noms als colors de les imatges.

La principal contribucié d’aquesta tesi és un model paramétric d’assignacié de
noms de colors en imatges. El problema s’ha emmarcat en la teoria dels conjunts
difusos en la que cadascuna de les 11 categories basiques de color (blanc, negre,
vermell, verd, groc, blau, marr6, morat, rosa, taronja i gris) estd caracteritzada per
una funcié de pertinenca.

Donat que l'objectiu d’aquest model és obtenir els mateixos noms que propor-
cionaria un observador huma, es necessita un conjunt de judicis fets per persones
com a punt de partida pel procés de modelat. Per obtenir aquest conjunt de dades
es proposa una metodologia basada en logica difusa per experiments psicofisics que
ha permés obtenir un conjunt de judicis difusos. La metodologia i els resultats so6n
validats a partir del calcul d’alguns estadistics habituals que s6n comparats amb ex-
periments previs per mostrar l’equivaléncia entre els resultats obtinguts amb la nova
metodologia i els d’experiments anteriors. El conjunt de dades obtingut s’ha posat a
disposicio de la comunitat cientifica a través d’Internet.

L’analisi dels resultats de ’experiment permet definir les propietats que les fun-
cions de pertinenca haurien de complir. Proposarem i avaluarem diverses funcions
per arribar finalment al model Triple Sigmoid amb centre Elliptic (TSE) que pro-
porciona un bon ajust al conjunt d’aprenentatge i una classificacié de 1’espai de color
Munsell que és consistent amb els treballs previs. El resultat del procés d’ajust és
el conjunt de parametres del model que permeten calcular la pertinenca de qualsevol
mostra de color a les 11 categories de color considerades, amb tots els avantatges
d’una implementacié parameétrica.

La darrera part de la tesi estd dedicada a l’analisi de les condicions necessaries
per aplicar el model en imatges reals sota condicions no calibrades on no es coneix
cap informacié sobre les condicions d’adquisicié. Aquesta analisi mostra que el model
pot funcionar amb un error acceptable en aplicacions de visi6 per computador en les
que és necessaria una representacié perceptiva de la informacié de color. El model



iv

s’avalua en una d’aquestes aplicacions per un problema real d’anotacié automaética de
bases de dades d’imatges. Els resultats en els experiments mostren la potencialitat
del model d’assignaci6 de noms de color per diferents aplicacions futures i obren noves
possibilitats de recerca en aquest camp.
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Chapter 1

Introduction

The goal of this thesis is to automate the colour-naming task in the computer vision
framework. In this chapter we introduce the topic of colour in computer vision and,
more specifically, we focus on the colour-naming task. We will define the problem
and will consider related topics, such as colour constancy and colour induction, that
influence the automation of the colour-naming task. Finally, the fuzzy nature of the
problem will be taken into account to define the framework in which the problem is
posed.

1.1 Colour

Colour is the perceptual phenomenon caused by the light that reaches the retina. The
human visual system only processes the electromagnetic radiation of wavelengths be-
tween 380nm and 780nm, that is, the human visible spectrum of light. The assignment
of a colour name to each stimulus is the last stage of human colour vision.

Colour is a very important visual cue in human perception. Among the several
visual tasks involving colour, one of the most commonly done by humans is colour
naming. The aim of this task is, given a region from a scene with a more or less
homogeneous colour, to take a decision in natural language about what is the hue or
colour that best describes the region. Humans are able to do this task since early
ages, it is done frequently and colour names are used without effort. However, the
perceptual mechanisms that rule this process are still not completely known as it will
be seen in the next chapter.

Colour naming has been studied from very different points of view. For many years
philosophers, anthropologists, linguists, physiologists, psychologists and colour scien-
tists have researched on this topic. However, the anthropological study of Berlin and
Kay [27] was the starting point of a lot of research about the topic in the subsequent
decades. They studied colour naming in different languages and stated the existence
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of universal colour categories. They also defined the set of 11 basic categories that
have the most evolved languages. These are white, black, red, green, yellow, blue,
brown, purple, pink, orange and grey. The research on colour naming in the different
fields mentioned above is reviewed on Chapter 2.

Colour has also been a very important visual cue on computer vision. Many ap-
plications such as object recognition, image retrieval, tracking, or segmentation have
used colour information. In computer vision, colour has been normally represented
in different spaces that provide a complete representation, but do not easily derive
information about how colour is named by humans. Although the high level informa-
tion that colour names provide would be very useful for computer vision applications,
the automatic assignment of names to image regions has not been widely considered
up to now.

One of the applications in computer vision where the automation of the colour-
naming task may be very useful is Image Retrieval. The amount of multimedia
contents to which users have access has incredibly grown in the last years. This
fact has brought associated the need of managing such amount of information in
a practical and efficient way. To this purpose many image database systems have
been developed [106, 110, 116, 62]. Early systems were based on textual annotations
associated to images and queries were done by giving a verbal description of the image
content. This approach implies a considerable amount of human work to annotate all
the images in a database. Moreover, the human subjectivity can cause inconsistencies
in annotations. To overcome these problems, a different approach was soon proposed:
content-based image retrieval (CBIR).

In CBIR information about image contents, in terms of colour, texture, shape and
others, is used to index images. CBIR queries are normally done by providing an
image similar to the one the user is searching (i.e. query by example) or by making
an sketch of the image content and its spatial distribution (i.e. query by sketch).
However, semantic queries are still needed. Users may not have a similar image to
the one they are searching, or may want to find images of specific semantic categories
(e.g. find images of "flowers’).

Hence, a problem appears at this point. While humans normally use semantic
concepts, the information that can be extracted from images is normally based on
numerical features. The distance between the high-level semantics of humans and
the low-level image features is known as the semantic gap. Therefore, techniques
for reducing the semantic gap are needed to achieve CBIR with high-level semantics.
Interesting reviews about CBIR can be found in [126] and [95].

At this point, we are able to state the main goal of this thesis. We aim to obtain
a computational model of human colour naming able to reduce the semantic gap. A
model of colour naming will be very useful to describe image colour contents in terms
of natural language. To automate colour naming obtaining the same judgements of a
human being, we have to use a learning set of data obtained from human observations.
To this end, we present a computational colour-naming model where the eleven basic
colour categories proposed by Berlin and Kay are modelled by fuzzy sets. Hence, after
defining a fuzzy set framework for colour naming, we develop a psychophysical colour-
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naming experiment to obtain an adequate learning set for our purpose. This learning
set will be used to fit the membership functions of the fuzzy sets corresponding to
the colour categories. Finally, the model will be tested on a real computer vision
application of automatic image annotation.

1.2 Colour Spaces

The importance of colour in industry and engineering brought the need of having a
way to measure colour. Colorimetry is the field of physics that has mathematically
specified colour perception.

The first attempts to describe colour were based on matching experiments with
colour lights. In colour matching experiments, a single-wavelength test light, @, is
displayed in one half of a split field on a black background and human observes
are asked to adjust the intensities, wy, wo and ws, of three linearly independent
monochromatic primaries, Py, P, and P3, that are mixed on the other half of the split
field to match the test light. These experiments are based on the trichromatic theory
[151] (i-e. colour can be described in terms of only three primaries) and the Grassman
Laws [63]. The Grassman Laws are:

1. First Law. Any light, @), can be matched by a linear combination of three
linearly independent primary lights, P, P> and Ps:

Q = ’LU1P1 +w2P2 + w3P3

where wy, wo, and ws are the amounts of each primary needed to match the
test light.

2. Second Law. If two test lights, @1 and @5, are mixed, the sum of the individual
weights that match the test lights matches the mixed light:

Qr=wi1PL+wioPr+wizPs A Q2=wy 1Py +wioPs+wy3hs
U
Q1+ Q2 = (w11 +w21)Pr + (w12 +w22)Pe+ (w13 + w2 3)P3
3. Third Law. Colour Matching is linear, that is,
Q =w1 Py +waPo+ wsPs
\
kQ = (kw) Py + (kws) Py + (kws) Py

Colour matching experiments were the basis on the definition of the standard
colorimetric observers of the CIE (Comission Internationale de I’Eclairage).
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1.2.1 CIE Standard Colorimetric Observer

In the context described above, where industry needed colour standards, the CIE
determined the colour-matching functions, (), g(A\) and b()), for a standard observer
in 1931.

These functions were obtained by adjusting each primary (P, = 700.0nm, P, =
546.1nm and P; = 435.8nm) to match a monochromatic source at every wavelength.
Hence any light source, Q()), can be expressed in terms of the three primaries as:

Q(\) = RP; + GP, + BP; (1.1)

where R, G and B are the tristimulus coordinates and they are computed from equa-
tions (1.2), (1.3) and (1.4):

R:/QQMMM (1.2)
G= / QN)g(N)dA (1.3)
B:/QQWMM (1.4)

where w is the range of wavelengths within the visible spectrum from 380nm to
780nm, and r()\), g(\) and b(\) are the colour matching functions that are shown in
figure 1.1.

3.0 I’(?\)

Tristimulus values

S ; : ;
400 500 600 700
Wavelength (nm)

Figure 1.1: Colour-matching functions of the 2-degree CIE standard colorimetric
observer in the RGB system.

The computation and use of the RGB colour space present some problems:
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e The 7(\) function has negative values for some wavelengths, which can be an
impediment in the design of colour measurement instruments.

e There is no axis directly related to luminosity response function of the visual
system.

e The RGB values are not easily associated with perceptual colour attributes such
as hue, chroma and lightness.

e Euclidean distances in the space do not correlate with perceptual dissimilarity.

In order to solve the first two of these problems the CIE defined another colour
space referred as XYZ, which is a linear trasform of the RGB space. This new system
is based on the use of three imaginary primitives that are positive for all A.

In this new space, the tristimulus values for a given colour, Q(\), are obtained
from equations (1.5), (1.6) and (1.7):

X:/Q@MMM (1.5)
Y = / Q)N (1.6)
Z:/QQMMM (1.7)

where w is the range of wavelengths inside the range of visible spectrum, z()),
y(A\) and z(\) are the colour-matching functions for the XYZ space, which define an
ideal observer referred to as the CIE Standard Colorimetric Observer (Figure 1.2).
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Figure 1.2: Colour-matching functions of the 2-degree CIE 1931 standard colori-
metric observer in the XYZ system.



6 INTRODUCTION

In this new space there is not a perceptual interpretation of the coordinates,
with the exception of the approximated relationship between Y-coordinate and colour
intensity. Nevertheless, this colour system has been widely accepted as a standard
space in colorimetry.

1.2.2 CIE Uniform Colour Spaces

To overcome the problems that XYZ colour space presents, the CIE has defined
perceptually uniform spaces, such as the CIELuv and the CIELab systems, where
distances correlate with perceptual dissimilarity. Despite it has been shown not to
be absolutely perceptually uniform [164], the CIELab space has been widely used
in applications where a correlation with human perception is needed. In this thesis
the CIELab space will be the work space where the colour-naming model is defined.
CIELab colour space is defined as a non-linear transform of the XYZ space ruled by
the following equations [157]:

1
* Y 3
L* =116 (YH) —~16 (1.8)
(/X \* [Y\?
* = 2) (= 1.
a* = 500 (Xn> (Yn> (1.9)
VAR ENZAY
b* = 200 (ﬁ) _<Z_n> (1.10)

with the constraint that X/X,,,Y/Y,,Z/Z, > 0.01. X,,, Y,,, and Z,, are the XYZ
coordinates of a reference white.

For values of X/X,,,Y/Y,,Z/Z, < 0.01 the values of L*, a*, and b* can be
computed by replacing previous equations by the modified equations:

Y Y
L¥, =903.3 (—) for o < 0.008856 (1.11)

n

om0 1 ()1 (2)] wn
o-as (2) -1 (Z2)] a1

where
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1
X \3 X
. (%) £ > 0.008856
/ <_) - (1.14)
7787 (55 ) + 4% % <0.008856

1
; (%) ¥ > 0.008856
f (—) = (1.15)
7787 (%) + 4% 3 < 0.008856

p (&)’ Z > 0.008856
! (—) = (1.16)
7787 (£ ) + 45 £ < 0008856

1.2.3 Munsell Colour Space

The Munsell colour system [157] is a perceptually uniform colour space that has been
widely used in colour naming research. Although our colour naming model will be
defined on the CIELab space, the Munsell notation will be used to test the model and
to compare the results to the ones from previous works. Munsell system is represented
in a cylindrical coordinate system in which colour is described by three attributes:
Hue, Value and Chroma.

Hue is related to the dominant wavelengths of the colour spectrum and it is rep-
resented as the angular position in the cylindrical coordinate system. Five principal
hues (Red (R), Yellow (Y), Green (G), Blue (B) and Purple (P)) and five half-way
hues (Yellow-Red (YR), Green-Yellow (GY), Blue-Green (BG), Purple-Blue (PB),
and Red-Purple (RP)) are defined in the system. Each hue is divided in a scale of 10
units.

Value represents lightness in a scale of 10 equally spaced units from 0 (black) to
10 (white). Value is represented in the central vertical axis of the cylindric system.

Chroma corresponds to saturation, that is, the amount of a neutral grey of the
same lightness that has the colour. Chroma is represented as the perpendicular dis-
tance from the central vertical axis of the cylindrical system. Chroma ranges from
C=0 for achromatic colours in the central axis to the maximum producible with pig-
ments. Hence, the maximum possible chroma can be different for different colours.

Colour naming has often been evaluated and studied by means of a representation
of the outer surface of the colour solid of the Munsell space which is referred as the
Munsell array. In the Munsell array used in colour naming, 320 chromatic chips are
represented. Hue scale is sampled at units 2.5, 5.0, 7.5, and 10.0 for each hue. Value
is represented in a range from 2 to 9 and each presented chip has its maximum chroma
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available. An additional ten-chip column is presented on the left of the chart with
the achromatic scale (value from 1 to 10 and chroma equal to 0).

1.3 Image Formation

To deal with the colour-naming task in the frame of computer vision we will consider a
simplification of the dichromatic model of Shafer [125] for image formation. It makes
us to assume images are formed from an ideal scene where surfaces are Lambertian
and uniformly illuminated. Thus the colour of a point is represented as a vector, §,
with components

8 = / E(\)SO)R:(\)dA (1.17)

where s; represents the ith component of the vector, that integrates over the range
of wavelengths, w, within the visible spectrum. The number of components depends
on the number of sensors which are usually based on three primaries: red, green and
blue. They depend on each specific device and their sensitivity responses are given
by R;(\) that provide an image in a RGB device-dependent colour space. Finally,
E(X) is the spectral power distribution of the illuminant and S()) is the reflectance
function of the point on a surface of the scene.

On this given image we want to simulate the human ability of the colour-naming
task, which obviously depends on how colour is perceived by the human visual system.
Thus, there is a gap, known as the sensory gap [126], between colour provided by a
digital image, and colour perceived by the human visual system. The usual way to
fill this gap is to apply an image transform through standard spaces which are based
on the spectral sensitivities measured in the human visual system, and which are
referred as the standard observer [157], as we detailed in the previous section. The
parametric model we present in this thesis will be given in one of these standard
spaces, the CIELab space. Hence, to use the colour-naming model on a given image,
we will need to know some information on the acquisition system or we will need to
perform a calibration process. Depending on what we know about the elements of the
acquisition conditions, that is, R;(A), S(A) and E()), then we can perform several
calibration procedures with different error amounts.

To overcome this problem a standard RGB colour space, denoted as sRGB, has
been proposed [7]. This space, as other RGB spaces [137], aims to be a default colour
space for multimedia applications by defining the relationship between sRGB values
and CIE 1931 XYZ values for a reference display and in reference viewing conditions.
The goal is to define a standard for interchange in multimedia. Hence, if the sensor
used provides values in the SRGB space, then the transform to CIE standard spaces
is straightforward. Otherwise, a calibration process will be needed. In the last years,
some devices that provide values on sSRGB colour space have been commercialized.

Apart from performing a correct calibration process, other considerations must be
taken into account for a naming task on a specific image. The model we present in
this thesis has been trained on data derived from psychophysical experiments where a



1.3. Image Formation 9

homogeneous colour area is shown to an observer that has been adapted to the scene
illuminant. Therefore, the name assignment has been done under ideal conditions
where neither influences from the illuminant nor the surround of the observed area
have any effect on the naming process. However, in practice, colour name assign-
ment is a content-dependent task and therefore perceptual considerations about the
surround influence must be taken into account.

In figure 1.3, some examples are shown. In the upper part of the figure (images
1.3(a) and 1.3(b)) the same surface can be represented by different RGB values due
to an illumination change on the scene. However, in a real scene we would perceive
both surfaces pointed by the arrows as being yellow, and we will require an automatic
colour-naming system to assign this name to both surfaces. The lower images (1.3(c)
and 1.3(d)) present the opposed situation. Although the regions of each image pointed
by the arrows have the same RGB values, we perceive them as being of different colours
and, thus, we require the model to assign different colour names to the same stimulus
depending on the surround of the region.

YELLOW YELLOW

(a) (b)
GREEN YELLOW  BLUE GREEN

(c) (d)

Figure 1.3: Examples of context dependence of the colour-naming task. The labels
shown correspond to the names that should be assigned after perceptual consider-
ations. (a) and (b) The blue cast in (b) is removed to assign the same name as in
(a). In (c) and (d) the same stimuli are assigned different names due to the surround
influences.

The model we propose assumes to work on perceived images, that is, images where
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the effects of perceptual adaptation to the illuminant and to the surround have been
previously considered. In the following section, we explain in detail these effects
and review some of the approaches that have been proposed in the computer vision
literature to deal with them.

1.4 Colour Constancy and Colour Induction

If we aim to obtain the same name assignments a human observer would provide
from an automatic colour-naming system, the perceptual effects cited above, namely,
colour constancy and colour induction, must be taken into account.

In this thesis we focus on the name assignment decision on the perceived images
and therefore, the perceptual considerations detailed in this section must be consid-
ered in a preprocessing step before applying the model on real images. The solutions
that have been adopted to solve these perceptual issues in order to apply the model
on real computer vision problems will be explained later in Chapter 5.

1.4.1 Colour Constancy

As it has been presented in the previous section, the RGB values on a colour image are
related to the illuminant spectral composition. Thus, the same surface may present
very different appearances under different illuminants or under different intensities of
the same illuminant. Figure (1.4) shows an example of the variation that the same
scene can suffer when there are changes in the illuminant characteristics. However, a
human observer will still be able to infer that the colours of the two kind of peppers
in figure 1.4 are yellow and red. That is because the human visual system has an
adaptive mechanism that allows us to avoid the spectral variations of the scene light
and assign stable colour names to the surfaces. This perceptual ability is called colour
constancy.

Figure 1.4: Two images of the same scene under different illuminants. The RGB
values acquired by a camera will be completely different in the two images.

The way the human visual system performs its colour constancy ability is still
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unknown. The most accepted hypothesis is Von Kries model [156], also called the
coefficient rule, which suggests that a change on the chromatic adaptation is caused
by the sensitivity reduction or extension in each cone type and without affecting their
relative spectral sensitivity. Since standard cameras do not have colour constancy
ability, the illumination variability is one of the main problems in computer vision.
Small changes in the illuminant intensity or colour may dramatically decrease the
performance of RGB-based colour algorithms.

The colour constancy ability presented by the human visual system has been
modelled in computer vision by different colour constancy methods. These methods
have focussed on recovering the illuminant of the scene when the image was acquired.
There are many algorithms to solve this problem [35, 86, 98, 54, 46, 37, 50, 52, 140],

Hence, the application of a colour constancy algorithm can provide images under
a reference illuminant, thus simulating an adaptation process to the illuminant. Inter-
esting comparatives between colour constancy methods can be found in the literature
[56, 10, 11, 71].

1.4.2 Colour Induction

Human perception of colour at a certain region is influenced by context and texture
in the scene. Significative changes on colour naming for different surround conditions
have been found on psychophysical experiments [111]. The mechanisms of colour
induction that the human visual system has, include colour assimilation and colour
contrast. Both effects depend on the colour surrounding a certain stimulus, but the
chromatic change is opposed. See figure 1.5 for examples of these phenomena.

(a) (b)

Figure 1.5: Examples of colour induction. (a) Colour assimilation. (b) Colour
contrast.

Colour assimilation occurs when our perception of the chromaticity of a stimulus
changes towards the chromaticity of the colour surrounding it. This phenomenon
will normally happen when we are observing a textured surface with a high spatial
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frequency. In computer vision, colour assimilation has been modelled as a blurring
effect [149, 117].

Colour contrast happens when the chromaticity of the stimulus changes away from
the chromaticity of the surround. This effect appears when we are observing a surface
with low spatial frequencies. In computer vision, colour contrast has been modelled
as a sharpening operation [149, 112].

Once the most important colour induction phenomena have been explained, we
assume that before we apply our model of colour naming, the input image will have
been pre-processed with any of the algorithms that model these phenomena, that is,
we assume that the input image in our model will take into account these perceptual
issues.

1.5 Problem Definition: Colour Naming as a Fuzzy-
set Problem

The basis of most of the works on colour naming has been the study of Berlin and
Kay [27] in which they stated the existence of a unique and common set of eleven
basic colour terms in different languages. In the way of explaining the colour-naming
process, Kay and McDaniel [78] proposed a general model of colour naming which
attempted to find the relationship between the neuro-physiological mechanisms in-
volved in colour naming and the semantic categories of basic colour terms. The
model is based on fuzzy set theory [81] where each colour category has a characteris-
tic function which defines a membership degree to the category. The most interesting
of the model is that it considers the colour-naming problem as something more than
the assignment of a colour term to a stimulus, since the fuzzy approach takes into
account the non-discrete nature of the problem.

In this thesis we propose to model the colour-naming task on the frame of fuzzy-
sets theory. A fuzzy set is described by its membership function. In colour naming,
we can consider that any colour category, Cy, is a fuzzy set with a membership
function, pc,, which assigns, to any colour sample § represented in a certain colour
space, a membership value uc, (8) within the [0,1] interval. This value represents
the certainty we have that § belongs to category Cj, and therefore has to be named
with its corresponding linguistic term ¢;. The essential contribution of this thesis will
be the proposal of a parametric model based on sigmoid functions to represent the
membership of these fuzzy sets.

According to the fuzzy sets theory, if n categories are considered, the membership
functions must fulfil the constraint:

S pe (5 =1 with  pe(®e01], k=1...,n (1.18)
k=1

Hence, for any given colour sample § it will be possible to compute a colour
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descriptor, CD, such as

CD(5) = (e, (5), - pe,, (5)) (1.19)

where each component of this n-dimensional vector describes the membership of
§ to a specific colour category.

The information contained in such a descriptor can be used by a decision function,
N (3), to assign the colour name of the stimulus 5. The most easy decision rule we
can derive is to choose the maximum from CD(3):

N(g) = tk:m.dx | kmax = arg kf}axn{uck (g)} (120)

where ¢ is the linguistic term to name the colour category Cy.

In our case the categories considered are the basic categories proposed by Berlin
and Kay, that is, n = 11 and the set of categories is:

C) € {Red, Orange, Brown, Yellow, Green, Blue, Purple, Pink, Black, Grey, W hite} (1.21)

For implementation issues, chromatic categories! in equation (1.21) are anticlockwise
ordered according to their location on a chromaticity plane starting on Red and ending
at Pink, and then, achromatic categories® are ordered according to their lightness,
from dark to bright.

1.6 Thesis Outline

This thesis has been organized in six chapters. In Chapter 1 we have presented
the goals of the thesis and have defined the framework in which this thesis will be
developed.

In Chapter 2 a bibliography review about the topic of colour naming is presented
in order to give the necessary background to study this task. The main contributions
from different fields are discussed, giving special attention to those which are nearer
to our goal of colour-naming automation.

Chapter 3 is devoted to psychophysical experimentation. In the first part, a review
of the different methodologies used so far is presented to show the lack of an adequate
previous experiment for fuzzy modelling of colour naming. In the second part of
the chapter, a new methodology is proposed and the results of a psychophysical
experiment following the proposed methodology are presented. These results are
analyzed and compared to previous works to show its validity for our purpose.

Chapter 4 begins with a discussion on the advantages that parametrical models
present in front of non-parametrical models to model the colour-naming task. In the
second part of this chapter, four approaches to colour-naming modelling are proposed

IRed, Orange, Brown, Yellow, Green, Blue, Purple, and Pink
2Black, Grey, and White
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before presenting the main contribution of this thesis, the Triple-Sigmoid with Ellip-
tical centre (TSE) model, which is developed and discussed in the last part of the
chapter.

Chapter 5 considers the issues related to the application of the proposed TSE
model to real images. These issues are colour space transforms, colour constancy
and colour induction effects. A modular scheme to take these topics into account is
proposed and colour-naming descriptors for images are proposed. In the last part of
the chapter, the model is tested on a real problem of automatic annotation for image
retrieval to show its usefulness for real applications in computer vision.

Finally, in Chapter 6, the results of this thesis are discussed and the contributions
of the thesis are summarized. To end, the future research lines that can be derived
from the thesis are explained.



Chapter 2

Colour Naming Background

Colour naming, or colour categorization, has been studied from different disciplines.
For many years, psychologists, linguists, anthropologists, physicians and engineers
have worked about this topic providing very different points of view about the prob-
lem. In this chapter we summarize the main contributions to the topic from these
different fields.

2.1 The Human Visual System and Colour Naming

Colour perception phenomenon begins when a luminous stimulus reaches the retina.
However, only a part of the whole radiant energy that receives the retina causes a
visual stimulus. This is what is called the visible spectrum referring to those signals
containing wavelengths between 380nm and 780nm. Outside this band of frequencies
the human visual system has no sensitivity. The way in which the human visual
system (HVS) processes these visual stimuli that reach at the eye has been the topic
of extensive research during the last two centuries.

In 1802, the physician Thomas Young was the first in suggesting that colour
perception involved only three fundamental mechanisms with different sensitivities
[161]. It was only an hypothesis, but it was the start point of the trichromatic
theory. Some years later, von Helmholtz [151] proposed the existence of three different
channels to process colour.

Another important contribution to colour theory was done by Grassmann who in
1853 proposed that colour matches were based on linear operations [63]. Since then,
his laws have been the basis of psychophysical research about colour matches.

These first contributions to the understanding of the mechanisms involved in colour
perception helped to develop the trichromatic theory of colour perception. According
to it, colour perception is based on the information provided by only three sensors
with different spectral sensitivity.

At present, we know the retina contains two kinds of receptors: rods and cones.
While rods are sensitive to low intensity stimulus, cones give response to higher in-
tensities and also provide the information used by the HVS to perceive colour.

Colour perception is related to the presence in the cones of three different pho-

15
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topigments. Depending on these photopigments there are three types of cones. Each
of them presents different sensitivity and concentrates its response on certain wave-
lengths. Thus, the three cone types are called L (large), M (medium) and S (small)
related to the spectral wavelength where they present maximum sensitivity. Cones
have also been called red, green and blue respectively, although the maximum sensi-
tivity wavelength does not exactly correspond to these colours.

The spectral sensitivity curves of the three cone types in the retina were first
measured by Konig and Dieterici [82] in 1886. Since then the three cone absorptions
have been measured by different authors and with different techniques [152, 127]. In
all cases, results were very similar [88]. The most recent estimates were measured by
Stockman and Sharpe [133, 132]. Figure 2.1 shows these sensitivity curves.
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Figure 2.1: Sensitivity curves of the three cone types of the human visual system
estimated by Stockman and Sharpe [133, 132].

Hence, the information contained by the spectral distribution of any input stimulus
is reduced to a three values representation by the HVS. The output of the cones has
no wavelength information since each cone type has response to a wide range of wave-
lengths. The magnitude of the cone responses does not bring wavelength information
either. An increase in the output of a cone can be due to a change of the stimulus
to a wavelength for which the cone has more sensitivity or due to an increase in the
intensity of the stimulus. Since human beings are able to distinguish colours at dif-
ferent wavelengths it seems obvious that the HVS must perform additional processes
at later stages.

There are psychophysical [69] and physiological [41] evidences that there is a sec-
ond level of processing based on colour differences. These evidences include the fact
that while we are able to perceive some colours as a mixture of two other, e.g. orange
as a mixture of red and yellow, we are not able to perceive any colour as a mixture
of certain colours, e.g. there is no colour perceived as a mixture of red and green.
An opponent colour mechanism was proposed by Hering [69]. According to Hering’s
theory, there are three opponent channels with opposed responses to pairs of stimulus.
These pairs are red-green, blue-yellow and white-black. His opponent theory was first
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considered as antagonistic and excluding to the trichromatic theory. However, some
years later Hurvich and Jameson [73] revised the opponent theory and proposed the
opponent mechanism as a second stage of the colour processing. They also measured
the responses of the three opponent channels by psychophysical experimentation. The
opponent mechanisms were also quantified by Ebenh6h and Hemminger some years
later [45].

According to several studies [42, 128, 129], this opponent behavior takes place
in the retinal ganglion cells and the Lateral Geniculate Nucleous (LGN). Two main
interactions between the cones responses are involved in this stage. De Valois et
al. [41] identified four different types of spectrally opponent cells in the LGN of the
macaque monkey. One type is excited by a red signal and is inhibited by a green
signal, while a second type has the opposite behaviour. This pair is normally referred
as the “RG” system. The two other types of opponent cells have the same behavior
as the “RG” system but with yellow and blue signals. This pair is referred as the
“Y B” system. The system is completed by two types of spectrally non-opponent cells
which are only sensitive to intensity changes and that are referred as the “Wh — Bl”
system. Each one of the opponent channels would receive different inputs from the
cones in the retina. Several possibilities for the connections from cones to opponent
cells have been proposed [88].

Krauskopf et al. [83] also described three independent channels in colour vision
by means of psychophysical experimentation. They called these channels cardinal
directions, which included a luminance direction and two colour-opponent directions.
The novelty of this work is that the directions found were different from the red-green
and blue-yellow axis of the Hering theory. De Valois and De Valois [43] proposed a
multi-stage model that integrates both opponent axis proposals. According to this
model, whereas the cardinal directions of Krauskopf et al. are directly related to the
cone outputs on a second processing stage, Hering’s opponent axis correspond to a
higher stage.

The last step in colour processing is performed in the visual cortex. The knowledge
about this stage of colour perception is considerably smaller than about the first stages
explained previously [87]. In fact, as De Valois and De Valois stated in [43], “one can
thus cite some cortical study in support of (or against) almost any suggestion about
cortical color processing”.

De Valois and De Valois [42] proposed that information in the cortex goes in
two directions. Whereas one would include colour-specific channels that separate
luminance and colour information, the other would go into multiple-colour channels
with cells that use colour to extract form information. The existence of a specific area
in the visual cortex, frequently referred to as the “Colour Center”; exclusively devoted
to colour processing has been the topic of many research in the last decades. Zeki
[162] reported an area in the macaque monkey cortex, termed V4, formed only by
colour-specific cells that responded to limited spectral regions. However, Schein et al.
[121] reduced the estimate of colour-specific cells in V4 to only the 20% of the total
population of cells. In humans, brain imaging studies [100] have revealed an analogue
area, human V4, with high activity in different colour vision tasks. Hadjikhani et
al. [67] also found such area with high activity for colour tasks, but they considered
it was different to monkey V4 and called V8 in humans. Zeki [163] insisted on that
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both areas were the same and should be called V4. However, although these works
maintain the existence of the “colour center” in the cortex, other works argue that
such center processing only colour information does not exist [58].

Colour naming is one of the visual tasks involving colour that is supposed to be
done in the last stages of processing. The way in which the visual system manages the
information from the opponent-colour system to codify the colour names and label
each stimulus with its corresponding name is not known yet. Although, it seems
reasonable that the “Wh — BI” system provides the luminance information, and that
the chromaticity information from “RG” and “Y B” systems is used to codify hue and
saturation, the mechanisms that rule this process are unknown. However, there have
been some attempts to link the responses of the opponent system to the colour names
assigned by humans [42]. A recent psychophysical experiment [111] found that this
relationship could be modelled with a network based on very simple operators.

After this brief review on the mechanisms of human colour vision the main con-
clusion to which we can come is that there is still a long way to know the mechanisms
of the whole process. Although much progress has been done on the understanding
of the first stages, a lot of the last stages is still unknown. A good revision of the last
advances in this area can be found in [60, 59, 129].

2.2 Basic Colour Terms

Colour naming, and all the semantic fields in general, have been involved for many
years in a discussion between two points of view in linguistics. On the one hand,
relativists support the idea that semantic categories are conditioned by experience and
culture, and therefore, each language builds its own semantic structures in a quite
arbitrary form. On the other hand, universalists defend the existence of semantic
universals shared across languages. These linguistic universals would be based on the
human biology and directly linked to the neurophysiological mechanisms. Colour has
been presented as a clear example of relativism since each language has a different set
of terms to describe colour.

Although some works had investigated the use of colour terms in English [97],
the anthropological study of Berlin and Kay [27] about colour naming in different
languages was the start point of many works about this topic in the subsequent years.

Berlin and Kay studied the use of colour names in speakers of a total of ninety-
eight different languages (20 experimentally and 78 through literature review). With
their work, Berlin and Kay wanted to support the hypothesis of semantic universals
by demonstrating the existence of a set of colour categories shared across different
languages. To this end, they first defined the concept of “basic colour term” by setting
the properties that any basic colour term should fulfil. These properties are:

e It is monolexemic, i.e. its meaning can not be obtained from the meaning of its
parts.

e It has a meaning which is not included in that of other colour terms.

e It can be applied to any type of objects.
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It is psychologically salient, i.e. it appears at the beginning of elicited lists of
colour terms, it is consistently used along time by speakers and across different
speakers, and it is used by all the speakers of the language.

In addition, they defined a second set of properties for the terms that might be
doubtful according to the previous rules. These properties are:

The doubtful form should have the same distributional potential as the previ-
ously established basic terms.

Basic colour terms should not be also the name of an object that has that colour.
Foreign words that have recently been incorporated to the language are suspect.

If the monolexemic criterion is difficult to decide, the morphological complexity
can be used as a secondary criterion.

The work with informants from the different languages was divided in two parts.
In the first part, the list of basic colour names in each informant’s language, according
to the previous rules, was verbally elicited. This part was done in the absence of any
colour stimuli and using as little as possible of any other language. In the second

part,

subjects were asked to perform two different tasks. First, they had to indicate

on the Munsell colour array all the chips that they would name under any condition
with each of their basic terms, i.e. the area of each colour category. Second, they had
to point out the best example (focus) of each basic colour term in their language.

Data obtained from the 20 informants was completed with information from pub-
lished works in other 78 languages. After the study of these data, Berlin and Kay
extracted three main conclusions from their work:

1.

Existence of Basic Colour Terms. They stated that colour categories were not
arbitrary and randomly defined by each language. The foci of each basic colour
category in different languages were all in a close region of the colour space. This
finding led them to define the set of eleven basic colour terms. These terms for
English are white, black, red, green, yellow, blue, brown, pink, purple, orange
and grey.

Evolutionary order. Although languages can have different number of basic
colour terms, they found that the order in which languages encoded colour
terms in their temporal evolution was not random, but it followed a fixed order
that defined seven evolutionary stages:

e Stage I: Terms for only white and black.
Stage II: A term for red is added.

Stage I1I: A term for either green or yellow (but not both) is added.

Stage IV: A term for green or yellow (the one that was not added in the
previous stage) is added.

Stage V: A term for blue is added.
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e Stage VI: A term for brown is added.

e Stage VII: Terms for pink, purple, orange and grey are added (in any
order).

These sequence can be summarized with the expression:
[white, black] < [red] < [green, yellow] < [blue] < [brown] < [pink, purple, orange, grey]

where symbol ‘<’ indicates temporal precedence, that is, for two categories A
and B, A < B means that A is present in the language before B, and order
between terms inside ‘[ ]’ depends on each language.

3. Correlation with cultural development. They noticed a high correlation of colour
vocabulary of a language with technological and cultural evolution. Languages
from developed cultures were all in the last stage of colour terms evolution,
while languages from isolated and low-developed cultures were at lower stages
of colour vocabulary evolution.

Figure 2.2 shows the boundaries in the Munsell space of the eleven basic colour
categories for American English that were obtained by Berlin and Kay. This cate-
gorization of the Munsell array has been used as a reference in later colour-naming

studies [31, 135] and will also be used to evaluate the model we propose later in
Chapter 4.
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Figure 2.2: Categorization of the Munsell colour array obtained by Berlin and Kay
in their experiments for American English.

The findings of Berlin and Kay have been questioned on some works. Schirillo
[122] accepts the universality of the six Hering primaries (Red, Green, Blue, Yellow,
Black and White) but questions the validity of Berlin and Kay theory for the other five
basic colour categories (Brown, Orange, Purple, Pink, and Grey). Schirillo suggests
that these categories might be more culturally determined, thus accepting up to a
certain point, the relativist theory. A complete opposition to the universality of
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colour categories is defended by Roberson et al. in [120], where colour categorization
is affirmed to be totally conditioned by cultural experience. For Roberson and her
colleagues the organization of colours into categories is based on language instead of
on the neurophysiology of the visual system.

Despite these discrepancies, the universalist theory of Berlin and Kay about the
existence of semantic universals for colour names is the most accepted one and has
been supported by many later results that will be reviewed in the following section.

2.3 Colour Naming in Psychophysics

After the important study of Berlin and Kay about colour naming, many contributions
in the field of psychophysics have been done. Most of this research has been focused
on the discussion about the existence and the location of the basic colour terms. In
this section we review the most relevant works on the colour-naming task and discuss
on the results and contributions of these works. However, we will not analyze the
methodologies used to obtain the results we summarize in this section because they
are explained in the next chapter.

The results of the work of Berlin and Kay have been analysed in several later works.
Boynton and Olson performed an experiment [31] to locate the regions occupied by
the basic colour categories in the OSA space [107]. In this experiment, subjects
were presented with a wide set of colour samples and they were asked to give a
monolexemic colour name to the sample. The results of the experiment showed that
basic colour terms were used by the subjects of the experiment more frequently than
non-basic colour terms and that basic colour terms had a lower mean response time
than non-basic colour terms. With their experiment, Boynton and Olson confirmed
the existence of the eleven basic colour terms proposed by Berlin and Kay. Moreover,
they considered that these results are the confirmation that the link between basic
colours and their names was congenital and physiologically based. These results were
confirmed in a later study by the same authors [32] where three measures on the
results of a similar experiment showed the saliency of basic colour names over non-
basic colours. The analysis was focused on chromatic basic colour names and showed
that all chromatic basic colour names were used faster, more consistently and with
more consensus than non-basic colour names.

The previous experiments were replicated in the Munsell space by Sturges and
Whitfield in [135] and [136]. The results agreed with Berlin and Kay theory and
confirmed the existence and location of the eleven basic colour terms proposed by
Berlin and Kay. Again, the eleven basic colour terms were used faster, more con-
sistently and with more consensus than the rest of colour terms. The similarity of
the results in the two colour spaces, the OSA space and the Munsell space, was also
shown in a comparative study [30]. A later experiment with a completely different
technique [105] located the centroids of basic colour categories in similar positions of
the colour space. All these results seem to indicate that the location of basic colour
categories does not depend on neither the colour space nor the technique used in the
experiments.

The prevalence of basic colour terms in front of non-basic colour terms was also
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confirmed by Guest and Van Laar [65]. They made a further step by applying the
Principal Component Analysis (PCA) technique from three simple measures obtained
from the experiment (response times, confidence ratings and consistencies). The result
was a single measure of the naming easiness, which they called “nameability”. Hence,
each point of the colour space can be assigned with a nameability value and thus obtain
a map of the colour space that represents which areas were areas of no confusion about
the name to be assigned and which areas were hard to name. In a later experiment,
Guest and Van Laar [66] studied the correlation between nameability and performance
on a naming task. They found that observers performed better when a set of highly
nameable colours was used than when a different set of colours with very similar
metric characteristics but without the nameable property was used.

A different group of experiments were designed to study colour naming across
different languages and cultures. Uchikawa and Boynton [144] repeated with Japanese
speakers the experiment done with American speakers [31]. The comparison of the
results showed that both languages had the eleven basic colour terms proposed by
Berlin and Kay, and also showed that the colours these terms described were the
same in both languages, which agreed with the thesis of Berlin and Kay. Lin et
al. made comparative experiments [89, 90] with English and Taiwanese Mandarin
speakers in order to evaluate the differences between the use of colour names in both
languages. The results demonstrated again that there were small differences between
these languages and that the use of basic colour terms was equivalent in such different
languages. Once again, the results of Berlin and Kay were reaffirmed. However, in
these experiments, the authors found some differences in the use of modifiers (light,
deep, etc.) which they attributed to cultural differences.

As we have seen, the existence and universality of the eleven basic colour terms
has been widely supported from psychophysics. However, some results in the opposed
direction have been reported. In [74] and [75], although the existence and importance
of the eleven basic colour terms is accepted, the linkage of these colour sensations and
the neurophysiology of the visual system is questioned.

Nonetheless, Berlin and Kay results are widely accepted and, as we have seen in
this section, they are the basis of present studies on colour naming.

2.4 A Neurophysiological Model of Colour Naming

Kay and McDaniel [78] proposed a model for colour naming based on the neurophysi-
ology of the human visual system. In their work, they defended that colour naming is
not a discrete process, but a continuous process. This proposal was in contradiction
with a widely extended theory in linguistics that stated that the semantic primes were
discrete entities.

Kay and McDaniel were the first in posing the problem of colour naming as a
fuzzy-set problem and defined each colour category as a fuzzy set with a membership
function. These fuzzy sets were directly derived from neural response functions of the
four opponent colours proposed by Hering. To do this, they identified the neural re-
sponses of opponent cells defined by De Valois et al. [41] with the semantic categories.
Hence, they defined four fundamentals (red, green, blue and yellow) which would
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have a neuronal basis. Membership to these fundamental categories were computed
as the proportion on the total chromatic response [155] contributed by each opponent
state. The values of membership for each wavelength define the fuzzy sets for the four
fundamental categories. Two additional categories (white and black) are modelled in
terms of percentage of reflectance. The membership degree to White is computed as
the Munsell value (brightness) divided by ten (Munsell value scale runs from one to
ten). Membership degree for black is modelled as unity minus the membership to
white

After defining these six fuzzy sets for the primary colour categories, they state that
the semantic categories corresponding to all the basic colour terms can be defined as:

e one of the four fundamentals (Red, Green, Blue, and Yellow).
e one of the two additional fundamentals (White and Black).
e fuzzy unions among these six primary categories.

e simple functions of fuzzy intersections among these six primary categories.

Basic colours of languages with few basic colours, i.e. languages in the first stages
defined by Berlin and Kay [27], are defined as fuzzy unions. Some of these languages
have a colour category corresponding to the cool areas of the colour space, i.e. green
and blue for a language with 11 basic colour terms. This category, which is sometimes
referred as Grue, can be defined as the fuzzy union of Blue and Green fuzzy sets.
Similarly, a category referred as Warm can be defined as the fuzzy union of red and
yellow, Light-warm as the union of White, Red and Yellow, and Dark-cool as the
union of Black, Blue and Green.

The rest of the basic colour terms are defined as fuzzy intersections of the six
fundamentals. Hence, Brown is defined where Yellow and Black overlap, Pink where
Red and White overlap, Purple in the region where Red and Blue overlap, Orange
where Red and Yellow overlap and Grey where Black and White overlap. The fuzzy
intersections used to define these categories are sometimes completed with non-fuzzy
operations (multiplications and subtractions) in order to obtain fuzzy sets coherent
with the fuzzy framework defined. Table 2.1 shows a summary of the fuzzy sets
defined by the model of Kay and McDaniel.

The most important point of this work is that it changes the vision of colour
naming as a discrete problem, where colour categories were defined by focus and
boundaries, to a fuzzy vision that takes into account the continuous nature of colour
naming. This point of view has been the framework for our work and for many other
approaches on the field of computer automation of the colour-naming task.

2.5 Computational Models of Colour Naming

A completely different point of view to the problem of colour naming is that of com-
puter vision. In the last two decades, many attempts to automate this task have
been done. Although the high level information that colour names provide has not
been widely used in computer vision until recently, the interest for colour naming
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Fundamental categories: fuzzy sets based from neural responses

fBlack
fwhite
fRed
erllow
fGreen
fBlue

First-Stages Categories: fuzzy sets based on fuzzy union

fDark—cool - fBlack OR Green OR Blue
frLight—warm =  fWhite OR Red OR Yellow
fWarm - fRed OR Yellow
fC’ool - fGreen OR Blue

Basic Colour Categories: fuzzy sets based on fuzzy intersection

fBrown — fBlack: + Yellow
fPurple — fRed + Blue
[Pink = [Red + White
fOTange - fRed + Yellow
fGTey — fWhite + Black

Table 2.1: Summary of the fuzzy sets defined in the model of Kay and McDaniel.
Symbol ‘4’ indicates a fuzzy intersection, sometimes along with one or more non-
fuzzy operations.

is increasing. In this section we review the most important contributions from the
computer vision field.

This review is divided in two parts. The first one is concerned with those models
that have not considered the degree of uncertainty that colour naming involves. The
second part is devoted to the methods that have used the fuzzy framework to take
into account the non-discrete nature of the problem.

2.5.1 Non-fuzzy Colour-Naming Models

In the decade of the thirties some fields, such as industry, arts and science, brought
the need of unifying the vocabulary used to describe colour and soon standards for
this field were required. The ISCC-NBS system [79, 80] was a first attempt to stan-
dardize the use of colour names. It was proposed by the U.S. National Bureau of
Standards (NBS) in 1939 following the recommendations of the Inter-Society Color
Council (ISCC). The system defines a set of valid terms and modifiers which can be
combined to obtain a final name. Five degrees of lightness are allowed (very light,
light, medium, dark and very dark). Saturation can be described with four adjec-
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tives (grayish, moderate, strong and vivid). Three additional terms substitute certain
lightness-saturation combinations (pale for light grayish, brilliant for light strong, and
deep for dark strong). The preceding terms are used as modifiers to the set of valid
hues: pink, red, orange, brown, yellow, olive, green, blue, violet, purple, and com-
binations of them formed by two hues or by adding the -ish suffix to one of them.
Finally, the three achromatic hues white, grey, and black are also included. Although
the main principle of the system is quite simple, the rules to combine the different
elements of the lexicon are confusing and the lexicon results a bit difficult to use.
Hence, for example, not all of the possible hues, cover the full range of lightness and
saturations. The complete system includes a set of 312 possible colour names whose
representatives in the Munsell space are listed in [108].

Many years later, Berk et al. [26] proposed the Colour-Naming System (CNS)
which aimed to solve the problems presented by the ISCC-NBS lexicon. In CNS, the
syntax of the system is simplified by defining a set of rules that can be summarized
as a grammar. Lightness and saturation terms are the same as in the ISCC-NBS
system, with the exception of the additional terms brilliant, deep and pale that are
not included in CNS. Hue description includes seven chromatic terms (red, orange,
brown, yellow, green, blue, and purple) and three achromatic terms (white, grey, and
black). The system can generate 627 different colour names, but only 340 distinct
colours of these 627 can be found in the the Munsell Book of Colour [6]. The system
is tested with humans on a task of colour description in three colour notation systems
(CNS, RGB, and HSV). Although humans achieve better results in CNS, i.e. colour
is easier to describe in CNS than in the other two, this colour-naming system is still
not much intuitive. For example, some of the possible colour names in CNS are not
realizable and some names (e.g. very light grayish greenish-blue) can result a bit
difficult to understand and interpret.

Although neither of both systems were originally implemented for image applica-
tions, they could be easily used for this purpose. First, a representative should be
defined for each colour term of the system, and then any arbitrary sample from an
image could be assigned with a colour name by applying a nearest neighbour classifier
similarly as it has been done in a later system [103].

In the early 80’s, with the development of CRT displays and graphical interfaces,
the importance of using the high level information from colour names in computer
applications was soon appreciated. The first computational models of colour naming
that were developed were based on colour vocabularies and the division in blocks of
the colour space. The classification of stimuli was done according to that division,
that is, the sample to be named was mapped on the colour space and was assigned
with the colour name of the block that included the sample. These models were not
fuzzy and therefore they were only a tessellation of the colour space.

Following this approach, Tominaga [139] defined a colour-naming system in which
the Munsell space is divided into a set of blocks. Each block represents a colour name
and its boundaries are specified by the coordinates that limit each block. The system
defines four levels of naming accuracy and the rules for each level in order to obtain
a vocabulary that overcomes the problems of the ISCC-NBS and the CNS systems.
The levels of the system and the valid terms for each level are:

Level 1 encodes 16 colour terms: red, yellow, green, blue, white, black, grey, pink,
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orange, brown, purple, olive, yellow-green, blue-green, violet, and red-purple.

Level 2 includes nine additional terms such as beige, sky, lilac or lavender, that
are added to the 16 terms of level 1.

Level 3 includes nine tone modifiers: pale, light, bright, vivid, deep, dark, dull,
light grayish, and grayish.

Level 4 includes 3 additional adjectives for tone modifiers (dark grayish, soft,
and strong) and 8 hue shades (reddish, yellowish, greenish, bluish, purplish, pinkish,
brownish, and olive).

The basic order to create colour names in this system is:

[modifier on tone]+[modifier on hue]+[basic name of Level 2]

and the exact rules of application were defined as a grammar.

Although the system was proposed to overcome some of the problems of the pre-
vious colour-naming vocabularies, it has the same drawbacks. The resulting set of
colour names is too extensive and some of the possible names are difficult to inter-
pret. Moreover, the division of the colour space in the 236 colour blocks seems a bit
arbitrary. Anyway, the system is interesting since it was tested in images to describe
its colour content, and an algorithm with the necessary steps to use the system was
defined.

The same idea of dividing the colour space and mapping a sample to assign a colour
name is proposed by Lin et al. in [91]. They consider the 11 basic colour categories
and their boundaries in the CIELab space were adjusted to minimize the number of
wrongly named samples from data obtained in psychophysical experiments [89, 90].
Later, Wang et al. [154] improved the model with data from a more controlled exper-
iment and the model was extended to the CIECAMO02 space. The interesting point of
this approach is that the division of the space is based on data from psychophysical
experiments.

A different approach to the problem was proposed by S.N. Yendrikhovskij [159,
160]. This model assumes that colour categories depend on both the experience of
observations of the real world and the physiology of the human visual system. Colour
categories are modelled by applying the k-means algorithm on a sample of 10.000
pixels from a wide set of natural images. To name an arbitrary sample, the nearest
neighbour rule with the centers obtained from the k-means algorithm is used. An
interesting result of this method is that it allows to simulate the order of appearance
of colour categories which agrees quite well with the order proposed by Berlin and
Kay [27]. The formation of colour categories was also simulated on a community of
agents by Belpaeme [15, 14].

2.5.2 Fuzzy Colour-Naming Models

In a completely different line, we can consider the works that have taken the fuzzy
nature of the problem into account and have developed fuzzy models for colour nam-
ing. From this point of view, given a sample, it is not assigned a unique colour name
but it is assigned a membership value to each colour category. In this section, the
most important contributions from this point of view are reviewed.
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Univariate Gaussian Model

Lammens [85] modelled the 11 basic colour categories with a variant of the Gaussian
normal distribution.

Gn(§;m, o) =e

N

o
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(2.1)

where N is the dimension of the colour space, m is the mean and o is the variance.

For each colour category, the parameters of the model (17 and &) are fitted such
that the foci of Berlin and Kay results have membership 1 and the boundaries have
membership 0.5. The model is fitted in three different colour spaces (CIELab, CIE
XYZ and a neuro-psychophysical (NPP) space) and the best results are obtained in
the CIELab space. Figure 2.3 shows the categorization of the Munsell array obtained
with Lammens’ method.
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Figure 2.3: Results of Lammens Gaussian model on the CIELab colour space which
is the one where the model obtained the best results. Chips in light blue were not
assigned any name by the model.

The most interesting of the model is that it considers psychophysical data and the
fact of being the first approach to the problem with a parametric statistical model
with the advantages that this implies and that will be explained in detail in Chapter
4. Another important point of Lammens’ work is that it takes the colour constancy
problem into account by applying a colour constancy method to the images previously
to apply the colour-naming model. The model is applied to real images on tasks of
naming sample regions in the image and pointing out examples of colours.

Colour-Naming Metric

Mojsilovi¢ [103] defines a metric for the CIELab colour space which is more perceptual
than the Euclidian distance to measure colour similarity in terms of colour naming.
The set of colour names considered was the one from the ISCC-NBS system but
with some modifications on the names of some colours to agree with the results of
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a preliminary colour-naming experiment with human subjects. The syntax of the
model is very similar to that of ISCC-NBS and is defined by means of a grammar.
Given a sample to be named, the distances using the defined metric to the centroids
of each colour category are computed and the nearest neighbour rule is applied to
assign a colour name. As the distance to representatives of all the colour names
are computed, membership to any colour name can be easily computed. Mojsilovié
considers the problems of colour constancy and spatial averaging previously to apply
the colour-naming model. For the first problem, the method used by Lammens in
[85] is adapted to the metric defined. The spatial averaging effect is modelled as an
adaptive low-pass filtering operation. Although the solutions proposed to these two
problems are not very complex, it is interesting the fact of considering those problems
that condition the perception of colour names.

Fuzzy Colour Category Map

The model of Seaborn et al. [124] uses the data from the psychophysical experiment
of Sturges and Whitfield [135] as the basis to create a colour-naming map of colour
categories on the Munsell colour space. The model is based on the fuzzy k-means
algorithm to generate the membership of any sample on the Munsell space.

Consensus samples from Sturges and Whitfield experiment are considered the
representatives of each category. The convex hull of such samples are assigned with
membership 1 and to compute the membership of any other point of the Munsell
space the fuzzy k-means algorithm is applied. This is a fully fuzzy model that allows
assigning the membership to the eleven basic categories for any sample of the Munsell
space. Figure 2.4 shows the colour category map obtained.
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Figure 2.4: Categorization of the Munsell array obtained by the Fuzzy Colour
Category Map.

The main drawback of this model is that it is non-parametric (the disadvantages
that this implies are reviewed in Chapter 4). Another important drawback is the fact
of being a model defined on the Munsell space, since images are usually represented
on RGB spaces and there are not direct and exact translation from RGB to Munsell
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system. Anyway, the fact of using psychophysical data and being a fully fuzzy model
makes it a very interesting approach to the problem.

Linear Interpolation

Menegaz et al. propose in [102] a fuzzy model based on linear interpolation of the
membership values obtained in a psychophysical experiment. Their experiment used
the set of 424 samples of the OSA colour space [107] and memberships to each of the
11 basic colour categories of Berlin and Kay were computed as the relative frequency
of responses. The OSA samples were represented in the CIELab colour space that
was partitioned on 3D tetrahedrons by three-dimensional Delaunay triangulation. To
name an arbitrary sample, the memberships to the 11 colour categories are computed
by linear interpolation of the memberships from the four vertex of the tetrahedron
that includes the sample in the CIELab space.

Probabilistic Latent Semantic Analysis

An alternative approach to the previous ones is proposed by van de Weijer et al.
[145]. In this case, colour names are not modelled from data obtained or derived from
psychophysical experiments, but from real-world images. The data to model each one
of the 11 basic colour terms of Berlin and Kay is obtained from Google by making
searches of the style “red+color”.

Colour names are learned from the images by Probabilistic Latent Semantic Anal-
ysis (PLSA) which is a generative model previously used for document analysis [70]
and adapted by van de Weijer et al. to the purpose of learning colour names. After
learning, given a pixel, the model provides a probability value (i.e. a membership
value) for each colour category and the name assigned is the one with maximum
probability.

Although the initial vocabulary includes the 11 basic colour terms of Berlin and
Kay, it can be easily increased by just adding images labelled with the name to be
learnt to the learning set. The model is tested on image retrieval and pixel labelling
applications in which it obtains good results.

2.6 Summary

In this chapter a review of the most important bibliography about colour naming
has been presented. In the first part, the basic references about the research on the
human visual system have been reviewed to conclude that the state of the art in the
physiology of the visual system does not explain yet the mechanisms that rule the
assignment of colour names. In this field, there is still much research to do.

In the second part, the main contributions to the problem from the field of psy-
chophysics have been reviewed. The work of Berlin and Kay has been given special
attention since it has been the basis of most of the subsequent research. In fact, the
most accepted theories about colour naming were proposed in their pioneering study.

Finally, we have reviewed the works that have tried to computationally automate
the task of colour naming. These works have been grouped in two blocks according
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to whether they consider the fuzzy nature of the problem or not. In the following
chapters the contributions of this thesis to the last two fields will be presented.



Chapter 3

Psychophysical Experiments on
Colour Naming

An automatic colour-naming system should assign colour names in the same way a
real human observer does. To achieve this, the system must have a learning step
based on human judgements. Therefore, the success on the automation of the colour-
naming task mainly relies on an appropriate learning step. In computer vision, a
learning process can be the procedure of fitting a mathematical model to known
data, in our case psychophysical data, to simulate a specific task. For colour naming,
the psychophysical judgements to be fitted must be obtained from a colour-naming
experiment. Hence, considering colour naming as a fuzzy process implies defining a
model able to assign to a given colour sample, in our case a RGB triplet from a digital
image, a membership value to all colour categories according to the psychophysical
data.

As we have seen in the previous chapter, many psychophysical experiments on
colour naming have been done in the last decades. However, most of them have not
taken into account the fuzzy nature of the problem and the data they provide are not
suitable for our purpose. For this reason, in this chapter we present a colour-naming
experiment to obtain the fuzzy judgements we need as a previous step to automate
the colour-naming task.

The fuzzy data set obtained from the experiment we present, is the main contri-
bution of this chapter. This data set has been made available online to the scientific
community. Furthermore, the methodology proposed to obtain the fuzzy judgements
and the analysis performed to validate the method is another contribution of the
chapter. Finally, a last contribution of the chapter is the set of fuzzy judgements for
four more illuminants that can be useful for future research on colour naming and
colour constancy.

3.1 A Review on Colour-Naming Experiments

As we have seen in the previous chapter, there is an active psychophysical research
on colour naming. The goals and methodologies of all these works are diverse. In the
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previous chapter we focused on the results and the contributions to colour naming
of all these works. In this section we are going to review and analyse the different
methodologies used in psychophysical experiments on colour naming.

In the pioneering work of Berlin and Kay, informants from different languages
were shown the Munsell array with 329 colour chips and were asked to select the focal
point and the boundary of their basic categories. These basic categories had been
previously elicited from the informant in a first step.

Since then, a lot of psychophysical research on colour naming has been done.
The basic principle of a colour-naming experiment is quite simple. Usually, these
experiments work as follows. A set of colour samples are presented to a group of
human observers who must assign a colour name and/or more information to each of
the samples presented.

Although the main idea is quite simple, a colour-naming experiment can follow
very different procedures. The methodology of a colour-naming experiment is con-
ditioned and constrained by the final goal of the experiment. Hence, colour-naming
experiments can be classified according to several criteria.

In the following paragraphs we will review the variables included in a colour-
naming experiment and the different proposals that can be found in the literature.
The review is divided in four topics and we will focus on these points that are the
most important for the final result of a colour-naming experiment.

Subjects

The first variable in a colour-naming experiment is the number of subjects that
participate on it. The most usual number of subjects is between 10 and 20 approx-
imately (9 in [32], 10 in [144, 65, 154], 20 in [135, 136], and 22 in [66]). However
many experiments have used less subjects (7 in [31], 6 in [30, 33], 4 in [158]), or even
2 in [130, 111]. Some experiments [143] have included more subjects (30 people). In
cross-cultural experiments the number of subjects is normally higher. For example,
Lin et al. worked with 90 subjects in [89] and 40 subjects in [90], and Jameson and
Alvarado [75] made their experiment with 92 subjects.

A special case is the experiment of Moroney [105] that used the concept of dis-
tributed psychophysics and instead of having a small group of subjects and a wide
set of samples, a reduced set of samples were presented to a wide set of subjects via
the Internet. Thus, more than 700 subjects participated on this experiment

Subjects are normally tested to assure they have normal colour vision. To this
purpose, Ishihara test has been the most frequently used one [135, 136, 65, 158, 66,
89, 90, 75, 154]. Farnsworth D-15 and F-100 hue tests have also been used in [65] and
[144, 30] respectively. However, in some experiments [31] it is not reported whether
subjects were tested for normal colour vision or not, or it is not mentioned which test
was used [33, 32, 143, 130, 111]. Finally, in [105], due to the specific characteristics
of the experiment, it was not possible to test subjects for normal colour vision.

Stimuli

Decisions about the experimental stimuli are also important. The variables related
with stimuli include the number of samples, the colour space where the samples are
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represented and the source of these stimuli.

The first of the variables referring to stimuli is the number of samples. While
some experiments use a large set of samples (292 in [158], 300 in [130], 330 in [30],
348 in [65, 66], 424 in [31, 144, 32|, 446 in [135, 136], 729 in [154], or even 1526 in
[90]), other experiments work with a lower number of samples (78 in [111], 110 in [75],
144 in [143], 200 in [89], and 215 in [33]). Moroney [105], used a total number of 216
different samples, but each subject only evaluated a reduced subset of seven samples.

About the colour spaces that have been used, perceptually uniform colour spaces
have been preferred to select and represent the samples used in colour-naming ex-
periments. Hence, Munsell space was used in [30, 135, 136, 158], OSA space in
[144, 31, 33, 32, 75], CIELuv in [143, 65, 66], CIELab in [158, 154], and CIE appear-
ance models in [158] (CIECAM97) and in [154] (CIECAMO02). However, other colour
spaces have been used to select the samples of the experiments. Such spaces include
CIE xy in [130, 158, 111], RGB in [105], ISCC-NBS in [89], and Natural Color System
[68] in [90].

Finally, there are several possibilities about the source of the stimuli used in a
experiment. Most experiments work with physical samples [31, 144, 30, 33, 32, 135,
136, 158, 89, 90, 75, 154]. More recent experiments have used CRT displays to show
the samples to subjects [65, 66, 105], although this support was used before in [143] .
Other experiments to study aspects of colour naming have also used lights [130, 111].

Apparatus

Psychophysical colour-naming experiments have normally been done on calibrated
conditions, that is, the experiment is done with the same controlled conditions for
all the subjects in the experiment. In most cases, experiments are developed on a
closed room or a booth with fixed illuminant and geometry, although less restrictive
experiments have used different environments for subjects [30, 89] or even have been
done under completely uncalibrated conditions as it is the case of distributed
psychophysics developed by Moroney [105].

The illuminant used is one of the most important condition in experiments for the
implications it may have in the final results. In the colour-naming literature a wide set
of illuminants used in experiments can be found. These illuminants include CIE D50
[154], CIE D65 [89, 90], CIE C [75], incandescent lights of different colour temperature
(3000K [31], 3200K in [144, 32], 6500K in [135, 136]), or natural daylight [30, 89]. In
CRT based experiments, illumination has been simulated on the display [65, 66] or
no illumination apart from that of the display has been included [111]. Experiments
developed to study aspects of colour constancy have used multiple illuminants [143,
130, 158] or specific illumination, as in [33] where mixtures of low-pressure sodium
and tungsten illuminants were used.

Method

As we said at the beginning of this section, a colour-naming experiment normally
is done by presenting a set of colour samples to a group of subjects that evaluate
them. This process can be done on one or more trials. In experiments including two
trials [31, 144, 30, 32, 135, 136], samples are normally presented in random order in
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the first trial, and in the second the reverse order is used to avoid memory effects
and systematic errors. However, many experiments have been done on a single trial
[30, 143, 130, 66, 89, 90, 111, 75, 154] or in more than two, as in [158] and [65] where
each sample was evaluated three times.

The vocabulary of colour names includes a high variety of terms: single names
(e.g. red, yellow), compound names (e.g. blue-green,yellow-green), derived names
(e.g. purplish blue, greenish yellow), modifiers (e.g. light, deep), etc. Hence, the
information asked to the subjects in a experiment is a very important decision in the
design of the experiment. Results of the experiment are highly conditioned by the
rules imposed. Therefore, and depending on the goal of the experiment, this point
must be carefully treated.

Hence, experiments having general goals, such as analysing aspects of nameability
[65, 66] or cross-cultural studies [89, 75] have used unconstrained methods, that is,
no restrictions on the set of names that subjects can use are imposed. On the other
hand, those experiments having as goal a specific aspect of colour naming have used
constrained methods, that is, the subject is only allowed to use a set of predefined
terms.

The most general constraint is to allow only one-word names. These experiments
are referred as monolexemic. The degree of restriction varies between experiments:
all monolexemic names allowed [31, 144, 30, 32, 135, 136], only some monolexemic
are allowed [143], or only the eleven basic colour terms defined by Berlin and Kay
are allowed [130, 158, 111, 154]. Polylexemic experiments, that is, experiments
allowing the use of compound colour terms and modifiers, are normally unconstrained
[30, 65, 89, 105, 75]. However, polylexemic experiments can also be constrained [90]

Although in most of the experiments the only information that subjects must
provide is a colour name, some variations of the usual method have been proposed
and some experiments have used ratings to evaluate colour samples. Guest and Van
Laar [65, 66] asked subjects to provide a confidence rating on the scale from 1 to 5
according to their certainty about the name they provided. The same scale was used
in [75]. In [111] a scale from 0 to 10 was used.

Troost and De Weert [143] introduced the idea of describing colour samples with
a naming vector where each dimension corresponds to a colour term. The value of
each position of the vector, was the percentage of answers with that term that the
sample had received. The same approach was used in [154]. This representation was
also adopted by Speigle and Brainard [130] by using an 11-dimensional vector where
each dimension corresponds to one of the basic colour terms. In that experiment, the
ratings ranged from 0 to 9 and were provided by the subjects who were asked to "rate
how good an X the stimulus is", where X was each of the eleven basic colour names.

As we have seen in this section, the design of a colour-naming experiment incor-
porates many variables and the selection of the exact methodology for an experiment
is conditioned by the goal of the experiment. Table 3.1 summarizes the analysis of
the different methodologies that we have done in this section.
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3.2 Building a New Data Set for Fuzzy Colour Nam-
ing

In this section we present a colour-naming experiment we have developed to obtain a
data set of fuzzy colour-naming judgements that will be the basis of the subsequent
modelling process that will be presented in the next chapter.

As we have seen in the previous section, data from most of the previous colour-
naming experiments are not adequate to model the colour-naming space as a fuzzy
process. These experiments are usually done by only asking subjects to assign a colour
name to a given stimulus without any other judgement. Although some experiments
have introduced variations on the usual method, these experiments were not thought
to be used for fuzzy colour-naming modelling but were part of colour constancy studies
and the corresponding data sets are directed to that purpose.

To provide a sufficient data set of colour judgements adequate for the compu-
tational modelling of the colour-naming task, we have performed a colour-naming
experiment using a methodology similar to the used by Speigle and Brainard, and
that was previously tested on a preliminary experiment [21]. In the experiment, sub-
jects were asked to assign a membership value to all the colour categories considered.
The experiment is restricted to the eleven basic colour terms proposed by Berlin and
Kay because previous experiments [32, 136, 65] showed that basic names are used
more consistently and with more consensus than non-basic names. This fact is essen-
tial for computational approaches due to the problems caused by outliers, that is, low
consistent and low consensus samples. In addition, non-basic colour terms correspond
to small regions on colour space and this is difficult to model from a computer vision
point of view.

The final goal of this experiment is to obtain the adequate data set suitable to
be used as learning set on a fitting process to model colour naming as a fuzzy task.
In addition, we make two more contributions with this experiment. First, we make
available to the scientific community a complete dataset derived from a fuzzy colour-
naming experiment. Such dataset will be the basis of a mathematical model of the
colour-naming task by means of a fuzzy model. Second, we have computed common
statistics used to evaluate colour-naming experiments to demonstrate the validity of
these data. We have shown that data obtained from a scoring methodology present
similar statistics to data obtained in previous monolexemic experiments. After our
analysis we can assure that our data is valid in a perceptual sense, that is, data is not
affected by the method used which a priori could introduce more subjectivity to the
judgements obtained.

3.2.1 Method

Subjects

The subjects that took part in the experiment were 10 researchers (5 male and 5
female) from our lab. They were between 24 and 30 years old and all of them were
volunteers. All the subjects were tested with the Ishihara and Farnsworth D-15 tests
to guarantee they had normal colour vision. All the subjects were bilingual Catalan
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and Spanish speakers with an advanced level of English since the experiment was
developed using the English terms for the eleven basic colour categories. The fact
of having Catalan and Spanish speakers doing the experiment in English should not
be a problem for our final purpose of computationally modelling colour categories as
shown in [118§].

Stimuli

The stimuli used were a total of 387 samples which included 36 achromatic and 351
chromatic samples. Each sample had a size of 24 x 16 cm to assure a wide visual angle.
All the samples were printed by a HP DesignJet 2500CP Plotter, and their reflectance
functions were measured with a PhotoResearch PR-650 spectro-radiometer.

The selection of samples was done according to three criteria: to cover as much
as possible the colour space, to avoid overlapping between samples and to have a
reasonable number of samples, that is, a number of samples that did not make the
experiment too hard for subjects. To this end, the Munsell colour space was sampled
at each 2.5 units of hue, at each value unit (from 3 to 9) and at the highest chroma
value available. The selected samples were printed with a HP DesignJet 2500CP
Plotter. Obviously, the printed samples suffered a deviation from the real Munsell
due to the use of the plotter. To have the real reflectances of the printed samples,
they were measured with a PhotoResearch PR-650 spectro-radiometer.

Since the spectra of the selected samples are known, the coordinates of the samples
set at any colour space can be computed. Thus, we provide the CIELab values
computed according to standard equations [157] using the CIE Illuminant D65 and
the Two Degree Standard Observer. The corresponding Munsell values have been
computed with the "Munsell conversion - Version 4.01” software from Gretagmacbeth
[5].

To cover some gaps that appeared in the Munsell space we printed some additional
surfaces to have the final set of 351 samples that accomplished the three criteria
mentioned above. The set of spectra as well as the corresponding CIELab and Munsell
values of the samples used in the experiment have been made available online to the
scientific community [3].

Apparatus

The experiment was developed in a dark room. The subjects were sat in an adjustable
chair in front of a booth where the samples were presented. They were at a viewing
distance of 50 cm. from the sample that was presented on a support painted with
a neutral grey corresponding to Munsell N7. Because the final goal of our work is
to define a model that assigns colour names in the same way as a human observer,
we must consider the effects of the colour constancy mechanisms of the human visual
system. Thus, the inside of the booth was white to assure that psychophysical data
would be acquired considering the colour constancy mechanisms of the human subjects
doing the experiment. The samples were illuminated from the top of the booth by an
illuminant with a correlated colour temperature (CCT) of 5955K and a Luminance
of 150 ed/m?. Figure 3.1 shows a diagram of the experimental conditions.
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Figure 3.1: Scheme of the experiment conditions. The experiment was developed
under controlled conditions in a dark room to assure that samples were only illumi-
nated from the top of the booth.

Procedure

The procedure followed was very similar to the one followed by Speigle and Brainard.
Subjects were instructed to use only the eleven basic colour terms. These are white,
black, red, blue, green, yellow, purple, pink, orange, brown and grey. Any other colour
name was not allowed.

For each one of the samples presented, the observer was asked to distribute a total
score of 10 points among the 11 possible colour names according to the certainty
they had about the sample belonging to the different categories. Thus, if the subject
was absolutely sure about the colour name of a sample, then the 10 points had to
be assigned to the category corresponding to that name. Otherwise, if there was a
doubt between two or more names, the 10 points had to be distributed between the
categories corresponding to those names (e.g. blue - 4 and green - 6). Hence, the
result of the naming for each sample is a colour descriptor of 11 components, one for
each basic colour term. No time limitations were set to give a response.

The 387 samples were presented one at a time, twice each, to the ten subjects.
This means a total number of 7740 observations. The samples were first presented
in random order, and the reverse was used in the second trial. For each sample,
the scores from the 10 subjects were normalized to the [0,1] interval and averaged
to obtain the mean colour descriptor of the sample. The set of colour judgements
obtained is available at [3].

3.2.2 Results

The goal of the colour-naming experiment presented in this chapter is to provide
a set of fuzzy colour-naming judgements (i.e. the membership values of a wide set
of samples) for the eleven basic colour categories. Hence, we do not try to prove
the existence of the eleven basic colour categories nor their location in the colour
space, as some previous studies have done. Moreover, and in order to prove the
feasibility of the methodology followed, in this section we show that usual statistics
computed on monolexemic colour-naming experiments agree with the ones we can
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derive from our data. The statistics analysed are consistency, consensus, position of
focal colours and centroids, and the confusion matrix in the use of colour terms. The
analysis of consistency and consensus was done over the whole set of samples while the
analysis of the other three statistics only considered the chromatic categories due to
the reduced number of samples that were considered achromatic by the subjects. After
this analysis, we will be able to state that the methodology followed in the experiment
is a generalization that comprises the results of monolexemic experiments.

Consistency

Consistency is a measure of the degree of coincidence in the two evaluations that each
subject makes for each sample. In previous works, consistency has been calculated
by counting the number of times that a colour sample has been given the same name
by the same subject on the two observations of the sample. Due to the differences
between these works and our experiment, some variations of the consistency measure
are proposed. In our case, we do not have a colour name for each sample, but a
colour descriptor of membership values with 11 components, one for each of the 11
basic colour names. The proposed measures are the following;:

o Consistency based on identical membership values: Judgements for a sample
are consistent when the same subject gives exactly the same values to all the
categories in the two observations of the sample.

o Consistency based on the highest membership value: Judgements for a sample
are consistent when the same subject gives the highest membership value to the
same category in the two observations of the sample, no matter how the values
are distributed among the 11 categories.

o Consistency based on the city-block metric with a threshold (7): Judgements for
a sample are consistent when the city-block distance (equation (3.1)) between
the two colour descriptors given by the same subject is lower than the value of
the threshold 7.

11
d = |CDy(;)"" — CDy(#)"?| (3.1)
k=1

where C'Dj,(;)7! is the kth component of the colour descriptor, that is the score
given to the colour category C}, of the ith sample for the jth subject in the first
observation, C' Dy (z;)7? is the same component for the second observation.

e Global Consistency: The city-block distance between the two colour descriptors
given by the same subject is normalized to one and the global consistency is
calculated according to equation (3.2):

i=ns \~j=np | Y ke |C Dk ()7 =C Dy ()7
i=1 Zj:l - 2

(3.2)

Consistency =
ns - np
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where C Dy, ()7 is the kth component of the colour descriptor of the ith sample
for the jth subject in the first observation, C' Dy (77;)7? is the same component
for the second observation, ns is the number of samples, and np is the number
of subjects in the experiment. Notice that the sum of the differences is divided
by the highest possible difference which is 2. This measure has been designed
to take into account the nature of the fuzzy methodology of our experiment.

The consistency values were calculated for the four measures proposed. Obviously,
the results for the less restrictive measures (global consistency and highest member-
ship value) are the best, but the values obtained by the other measures are also
acceptable. According to the measure based on identical membership values, subjects
scored the samples consistently in 2501 of the 3870 evaluations. This means that
64.63% of the samples were scored identically. If we consider a threshold of 0.4 in the
calculation of the consistency (i.e. if the city-block distance between the two colour
descriptors is lower than 0.4, we consider the naming of the sample is consistent), the
number of samples scored consistently increases up to 2762, which means that consis-
tency was reached 71.37% of the time. If we only consider the colour name with the
highest membership value to study consistency, the number of samples scored con-
sistently is 3327 (85.97%). Finally, the application of the global consistency measure
provides a result of 85.43% of consistent use of the colour names in the experiment.
These results are summarized in table 3.2.

Counsistency method Coincidences %
Highest membership value 3327 85.97
Global consistency 3306.2% 85.43
City-block consistency with 7 = 0.4 2762 71.37
Identical membership values 2501 64.63

%Result obtained from equation (3.2)

Table 3.2: Consistency results obtained according to the different proposed mea-
sures.

If we assume that in a monolexemic colour-naming experiment the name assigned
to any sample would have been the one corresponding to the category with the highest
membership value in our experiment, we can compare the consistency results from
Boynton & Olson [32] and Sturges & Whitfield [136] experiments with our measure
based on the highest membership value. In those works the consistency values for
basic colour terms were 75% and 84.4% respectively. As can be seen, our consistency
value (85.97%) is very similar to the results obtained in these previous experiments.
Moreover, if we consider the consistency measure based on identical membership
values, the value obtained (64.63%) is not bad if we take into account that an exact
coincidence of the membership values is much harder to obtain than a coincidence of
only the highest value.
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Consensus

Consensus is a measure of the agreement in the judgements between subjects. In the
previous experiments, the consensus in a particular sample was computed by counting
the number of times that the most used name for that sample had been given by all
subjects in all the trials. Hence, perfect consensus for a sample was achieved when
all subjects used the same colour name on both trials of the sample.

In our experiment, we have 20 11-dimensional colour descriptors for each sample,
obtained from the two trials of the 10 subjects. From these 20 colour descriptors, we
have computed three different consensus measures.

e Consensus based on the membership values: Consensus is reached when all sub-
jects have assigned the same values to the eleven categories in all the evaluations
of the sample. Hence, in our case, a sample will have consensus if it has 20 iden-
tical colour descriptors.

e Consensus based on the highest membership value: Consensus is reached when
all subjects have assigned the highest membership value to the same category
in all the evaluations of the sample.

o Consensus based on the highest membership value with a threshold (7): Con-
sensus is reached when the highest membership value has been assigned to a
certain category in at least 7 evaluations of the sample. For example, if 7 is
set to 15, consensus will be reached if the category corresponding to the highest
membership value is the same for, at least, 15 of the 20 colour descriptors.

Consensus was computed for the three measures defined above. The first mea-
sure gave as a result that consensus was obtained for 43 of the 387 samples; this is,
for 11.11% of the samples. As happened with consistency, the second measure can
be considered the equivalent to the measure computed in previous experiments. In
the present experiment, total consensus based on the highest membership value was
obtained for 136 of the 387 samples. This means that 35.14% of the samples were
given the highest value to the same category by all the subjects. If we compare these
results to the consensus obtained in previous works, we can see that perfect consensus
in the experiments of Boynton and Olson, and Sturges and Whitfield was obtained
on 30% and 23% of the samples respectively. In our case, we obtain a slighter higher
consensus probably due to the fact that we do not allow non-basic colour names which
are used with lower consensus than basic colours.

Using the third statistic, the percentage of consensus increases gradually as the
threshold is reduced. Thus, when only 15 coincidences on the category which has
been assigned the highest membership value are required, consensus is of 75.97%, and
this value increases up to 98.19% when the threshold is set to 11 coincidences, which
is the minimum possible majority. In figure 3.2, the evolution of consensus value in
terms of the threshold (number of coincidences required) is presented.

Focal Colours

Focal colours are defined as the best examples for each colour category. In previous
experiments, focal colours have also been defined as the fastest named samples with
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Figure 3.2: Percentage of consensus when the criterion for defining consensus is
relaxed from 20 coincident responses (of 20 possible) to the smallest possible majority
of 11 coincidences.

consensus for each colour category. In our experiment, response time was not con-
sidered. Hence, we have selected as focal candidates all the samples which have been
assigned 10 points to the same colour category by all the subjects and in the two
evaluations of the sample. For two categories, orange and yellow, there is no sample
with total consensus and the samples with the highest mean membership value in
those categories have been selected as foci. In figure 3.3, our focal candidates and the
foci from Berlin and Kay, and Sturges and Whitfield experiments are shown in terms
of hue and value on Munsell colour space.
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Figure 3.3: Location of candidate foci obtained in the experiment and foci from
two previous works (Berlin and Kay, and Sturges and Whitfield). Samples used in
the experiment are shown as grey dots.

As can be seen in figure 3.3, the consensus samples from our experiment lie, in
general, near the focal colours found by Berlin and Kay, and Sturges and Whitfield.
The focal samples from Sturges and Whitfield have, in most of the cases, a candidate
focal of our experiment at a distance lower than one Munsell chip (2.5 hue units or 1
value unit). This distance is higher for three categories: orange, yellow and blue. In
the case of orange, the shift of the focus might be due to cultural reasons (it had been
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detected in a preliminary experiment [23] that Catalan and Spanish speakers located
the orange region at a different area from English). In the case of blue, the problem
could be due to the different criteria of selection of samples in the experiments, since
the focal locations are highly dependent on the stimulus set.

Centroids

Centroids are a measure of the central tendency of the location of the categories in
the colour space. In previous experiments the centroids of each category have been
computed by averaging the values of all the samples named with the corresponding
term, and weighted according to whether the term was used once or twice. In our
case, we have computed the centroids as the average of the values of the samples,
but weighted according to the membership values provided by the subjects for each
colour category (equation (3.3)).

Doy My
St my
where ns is the number of samples, #; is the ith sample and m, is the membership
value of the ith sample for category Cj.

Table 3.3 shows the centroids obtained in our experiment and in two previous
monolexemic works [31, 135]. Table 3.4 allows a comparison to the previous results
by giving the CIELab differences between experiments. In figure 3.4, the centroids for
the chromatic categories of the three experiments are presented in terms of Munsell
Hue and Value.

Centroidy, = (3.3)

Boynton & Olson  Sturges & Whitfield Benavente et al.

H A\ C H A\ C H A% C

Red 3.50R 3.97 919 6.01R 391 11.72 6.55R 5.02  10.82
Orange 1.73YR 5.91 10.10 3.88YR 6.21 1145 T7.42YR 6.77 7.90
Brown 3.85YR 4.41 452 7.69YR 4.32 5.78 6.88YR 6.01 4.72
Yellow  2.51Y 7.56  8.28 3.35Y 7.86 10.44 7.89Y 7.96  6.82
Green  8.21GY 6.07 5.07 1.73G 5.35 7.52 1.21G 6.38  4.16
Blue 8.44B 542 512 8.23B 4.87 7.33 2.67B 6.46  4.45
Purple  6.37P 4.53  5.22 4.75P 4.18 7.86 8.69P 5.65  5.82
Pink 2.04R 6.04 5.68 2.15R 6.14 8.59 838RP 6.72 6.73

Table 3.3: Centroids obtained in our experiment and in two previous studies.

As can be seen in table 3.3 and in figure 3.4, the centroids found in our work have,
in general, a difference of one value unit to the centroids of previous works. Again,
this is due to the different criteria in the samples selection which has been previously
explained. The fact that the samples were printed with a plotter has brought a
lack of samples in the low value areas of the Munsell space. The value difference is
considerably smaller for those categories that are located in the areas of high value
in the Munsell system, such as pink and yellow. The bigger differences are found for
the categories located at the low value areas (brown, purple and red) because they
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BO vs. SW BO vs. BVB SW vs. BVB

Red 15.75 12.56 17.69
Orange 14.05 20.83 19.81
Brown 12.17 18.81 19.02
Yellow 16.03 24.55 14.61
Green 17.19 21.27 10.47
Blue 10.93 22.89 14.38
Purple 12.78 20.03 12.08
Pink 12.45 12.86 8.99
Mean diff. 13.92 19.23 14.63

Table 3.4: Comparison of centroids obtained in our experiment (Benavente, Vanrell
and Baldrich [24] (BVB)) and in previous studies (Boynton and Olson [31] (BO), and
Sturges and Whitfield [135] (SW)), in terms of the CIELab differences.

R YR ¥ GY G BG B PB P RP
5 10 5 10 5 10 5 10 8 10 8 10 8 10 5 10 8 10 8 10
9
[VELLO!
8
7
ORANGE +
i PIK
B +
IGREEN BILUE
5 L BROWN o PURPIE
ED
L
4 B s .
g W Sturges & Whitfield centroids
# Boynton & Olson centroids
#  Our centroids
2 Samples
........

Figure 3.4: Location of centroids obtained in the experiment and in two previous
works (Boynton & Olson and Sturges & Whitfield). Samples used in the experiment
are shown as grey dots.
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are more affected by the lack of low value samples in the experiment. The mean
difference to Boynton and Olson study is 19.23 CIELab units and the difference to
Sturges and Whitfield is 14.63, while the mean difference between the centroids found
by Boynton and Sturges was of 13.92. Another possibility for these differences in
the results could be the different illumination conditions in the experiments. Boynton
and Olson used an illuminant with a temperature of 3200K and Sturges and Whitfield
used an illuminant of 6500K while our experiment was done under a 5955K illuminant.
The mean difference between centroids is smaller compared to Sturges and Whitfield
who used an illuminant similar to ours. However, the difference between Sturges and
Boynton is also small, but the illuminants are quite different. Hence, the influence of
illumination conditions in the results is not clear and needs further study. Anyway, we
can see that the differences between our centroids and the ones from previous studies
are reasonable. Moreover, the higher difference found in our case seems to be due to
the high dependence of the centroids locations on the set of stimuli selected as was
concluded by Speigle and Brainard [130].

Linked Colours

In previous studies the confusion matrix in the use of basic colour terms was analysed
to study the way in which basic colour terms were related. Boynton and Olson
defined two colours as linked when a majority of subjects applied the same different
basic colour terms to describe a particular colour sample on the two observations
of the sample. According to Sturges and Whitfield this inconsistency indicated that
the sample was perceived as a mixture of colours that contained elements of the two
terms used. With the information from the confusion matrix, it is possible to build a
three-dimensional model of the relationships between the basic colours.

In our case, the experiment has provided more information about these relation-
ships than previous experiments and we can use the whole set of membership values
to build the confusion matrix. Hence, our confusion matrix has been built by counting
the number of times that any subject has scored two particular colour names for the
same sample. This definition of the confusion matrix agrees with the idea of Sturges
and Whitfield that when a sample is named with two different basic names on the
two observations of the sample, it is perceived as a mixture of the two colours. In
our experiment, we assume that if subjects give values to two or more categories for
the same sample, it is because none of the basic colour terms describes exactly the
sample and they doubt about which name must be given to the sample. Table 3.5
shows the confusion matrix for our experiment (white and black are omitted due to
lack of sufficient data). To avoid some outliers detected on data, values less than 2
points have not been considered.

From the confusion matrix a three-dimensional model of the relationships between
the basic colour categories has been built. Figure 3.5 shows a schematic representation
of this model. The criteria to decide whether two colours are linked are similar to the
used by Sturges and Whitfield. As in their work, we represent all the relationships of
the confusion matrix (excluding confusions from a unique subject) and the width of
the line linking two colours indicates the confusion between the two colours.

The analysis of the linkages in Figure 3.5 shows that the colours that are linked
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Red Green Yellow Blue Orange Purple Grey Pink Brown

38 14 39 38
Red = (1) (6) © (9
Groen B 90 274 1 55 44
© (10) (1) (9) (9)
Yellow 90 - 32 5 1 59
(9) (8) 4 @ (10
Bluc 274 B 29 24
(10) (7) (7)
Orange 38 1 32 o 25 70
1w 1) @ 6  (10)
puple 14 29 B 13 57 5
(6) (7) (5) 9 (3)
Grey 5%} 5 24 13 - 6 30
© @ @ (5) 4 )
Pink 39 1 25 57 6 - 19
(9) (1) ©  © @ (3)
Brown 8 44 59 70 5 30 19 -
© (9 (0 w0 @ 66

Table 3.5: Confusion matrix computed from the results of our experiment. Each
cell of the matrix shows the number of times that a sample has been given values to
the categories intersecting on the cell. The number of subjects who scored the two
categories for at least one sample is given in parentheses.

Figure 3.5: Schematic representation of the linkages between basic colour categories
(excluding black and white). The spheres represent the position of colours on the
chromatic plane of the CIELab space. The model is viewed in perspective from
L=160.
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and unlinked are the same as in previous works, except for yellow-grey and pink-grey
which were unlinked in both previous studies. However, the linkages observed in
these two cases are very weak and confusions between those colours also appear in
the confusion matrices of the previous studies.

Hence, these results mean that although the method employed seems to include
more subjectivity, the rating of samples is done in a perceptual sense. Thus, for
example, nobody has given values to red and green or blue and yellow at the same
time, which would be contradictory to the opponent theory of colour perception.
Hence, the comparison of the results in terms of linked colours also supports the
validity of the method and the equivalence to previous studies about colour naming.

3.3 Fuzzy Colour-Naming Data for Different Illumi-
nants

As we have seen in the review of colour-naming experiments, there has been research
on the relationship between colour naming and colour constancy [29, 33, 143, 130, 158].
To provide fuzzy data for future research on this topic, the colour-naming experiment
presented in the previous section has been repeated with four more different illumi-
nants.

3.3.1 Method

The ten participant subjects, the stimuli used, and the dark room where the replica-
tions of the experiment were developed, were the same as in the previous experiment.

INluminants

The four additional illuminants used in the repetitions of the experiment were se-
lected along the Planckian locus to obtain a range of illuminants from a strong red-
dish 1765K illuminant to a strong bluish 26285K. These illuminants were obtained
by adding colour filters to the original illumination maintaining the Luminance of
150cd/m?. Hence, the four illuminants obtained had Correlated Colour Tempera-
tures (CCT) of 26285K, 3435K, 2320K and 1765K. Figure 3.6 shows the location of
the five illuminants (the original 5955K illuminant and the four for the repetition) in
the CIE xy chromaticity plane.

The spectra of the five illuminants are available at [3]. Table 3.6 summarizes the
information about the illuminants used.

Procedure

Each repetition of the experiment with a different illuminant was done a week later
than the trial with the previous one. Therefore the five repetitions of the experiment
were done in a period of five weeks.

The experiment using the illuminant with a CCT of 5955K was done first for all
the participants. The order of the rest of the illuminants was random for each subject
in order to avoid systematic errors. As we had done in the original experiment with
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CIE 1821 Chromaticity Dizgram

3435 K
A

5355 K
Jay

26285 K

Figure 3.6: Locations on the CIE xy chromaticity plane of the five illuminants used
in the experiments.

CCT X y
26285K 0.2486 0.2541
5955K  0.3220 0.3472
3435K 0.4151 0.4085
2320K 0.4991 0.4232
1765K  0.5567 0.4106

Table 3.6: Correlated Colour Temperature (CCT) and CIE xy chromaticity coor-
dinates of the illuminants used in the experiment.
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the first illuminant, the experiment was repeated twice for each illuminant and the
order of the samples in the second trial was the reverse from the first trial.

3.3.2 Results

The repetitions of the experiment provided the set of fuzzy colour-naming judgements
for the four new illuminants. As the number of subjects and samples was the same
as in the first experiment, the total number of observations for each illuminant was
of 7740, which means a total number of 38700 observations. As we did in the first
experiment, memberships for each sample were averaged and normalized to the [0,1]
interval. Hence, we finally provide a total of 1548 additional fuzzy judgements (387
for each of the four additional illuminants). These data for the four new illuminants
is also available at [3].

The set of fuzzy jugdements for five different illuminants can be very useful to
study the relationship between colour naming and colour constancy. As we explained
before, the inside of the booth where the experiment was developed was painted white
in order to allow the colour constancy mechanisms of the human visual system to act.
However, some of the illuminants used in the repetitions of the experiment were very
extreme and it would be interesting to evaluate if the colour-naming perception of the
subjects varied or the colour constancy mechanisms of the visual system could avoid
the effects of the illuminant to leave colour naming unaffected. The data provided
can be used for this goal, but it is out of the scope of this thesis.

3.4 Discussion

In this chapter, we have presented the colour-naming experiment developed to obtain
a set of colour judgements useful to be used as the basis for the fuzzy modelling of
the colour-naming task. Once we have the set of fuzzy colour-naming judgements the
next step is to find a mathematical model that fits the data from the experiment.
Using such data as learning set will allow us to obtain a model of colour naming that
provides the same colour-naming judgements as a real human observer.

This data set is the main contribution of this chapter. The set of fuzzy judgements,
the reflectances and, the CIELab and Munsell values of the samples used in the
experiment are available online at [3]. Making psychophysical data available to the
research community is an important step, at least in the computer vision field, because
it can contribute to achieve faster progress in this field. Moreover, it will allow
testing and comparing different models over the same data sets. This fact is also very
important in our field due to the complexity of obtaining that kind of data sets for
testing.

The methodology used in this experiment and the subsequent analysis is the second
contribution of the chapter. The results of our experiment have been compared to the
ones from previous monolexemic experiments to show that although the experimental
methods are considerably different, the results in terms of some usual measures in
colour naming are similar. This fact allows converting the results of the present
experiment to a monolexemic experiment by just assigning to each sample the colour



50 PSYCHOPHYSICAL EXPERIMENTS ON COLOUR NAMING

name with the highest membership value in the colour descriptor provided by the
subjects from the experiment.

The analysis of the results also supports the statement of Speigle and Brainard
about the heavy influence of the stimuli gamut in the location of focal colours and
centroids. Hence, some deficiencies in the selection of the samples used in the exper-
iment have caused that our foci and centroids are not exactly in the same locations
as in some previous works. Although these differences are not important for our pur-
pose, it would be interesting to find a way to analyse colour-naming results that is
not so dependent on the set of stimuli used as the computation of focal colours and
centroids.

As a final contribution of this chapter, we have repeated the colour-naming ex-
periment with four additional illuminants to provide a set of fuzzy judgements under
different illumination conditions. These data can be very useful for future studies on
the relationship between colour naming and colour constancy. As in the case of the
initial experiment, the resulting set of fuzzy judgements and illuminant spectra used
in the experiments are available online at [3].



Chapter 4

A Parametric Model for Colour
Naming

Once we have obtained a set of psychophysical data, the next step to build a colour-
naming model is to define the functions that will provide the membership values for
any given colour sample. The fuzzy judgements from the experiment will be used
as learning set to build the final model that should assign colour names in the way
the human observers from the experiment did. In this chapter we propose different
possible membership functions. Observation of the psychophysical data from the
experiment allows us to define the set of properties that the membership functions
should fulfil. Hence, several functions are proposed, each one improving the results of
the preceding. The last function that is proposed, the Triple-Sigmoid with Elliptical
centre (TSE), is the basis of the final colour-naming model which is the most important
contribution of this thesis.

4.1 Colour Data Modelling

To automate a visual task implies to build a computational model that reproduces the
behaviour of humans when doing such task. Many colour tasks, amongst them colour
naming, have been modelled following different approaches. In Chapter 2 we reviewed
and detailed the different methods that have been used to model the colour-naming
task. In general pattern recognition [44, 28], models are normally classified in three
groups:

Parametric models
Parametric models are characterized by a function with a set of tuneable parameters
that determine the form of the function. Usually the number of parameters will
determine the complexity of the function, which can vary from a trivial function with
few parameters to a complex function with a higher number of parameters.
Parametric models have been previously used to model colour information [9]. A
parametric model for colour naming was proposed by Lammens [85]. Such model
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was based on a variant of the Gaussian normal function. Gaussian models have been
widely used for different tasks involving colour [61, 134, 77].

Non-Parametric models

In non-parametric models, the structure of the distribution is defined by the avail-
able sample. This does not necessary imply that these models completely lack param-
eters, but that the number and nature of the parameters are flexible and not fixed in
advance. Hence, as few or none parameters have to be estimated, the building step
is normally faster than in parametric models. However, the use of the model is more
complicated since it normally implies calculations with the full set of samples that
define the model.

Amongst non-parametric models, the nearest neighbour and the k-means algo-
rithm have been used for colour naming. The nearest neighbour classifier based on
a perceptual metric defined on the CIELab space from the results of psychophysical
experimentation is used by Mojsilovié¢ in [103]. A similar approach is used by Menegaz
et al. in [102] where memberships for an arbitrary sample are linearly interpolated
from the four nearest points of the initial sample. The k-means algorithm was used
by Yendrikhovskij in [159, 160] to model colour categories. Seaborn et al. [124] used
the fuzzy definition of the k-means algorithm to define a fuzzy model. Other non-
parametric colour-naming models are based on the definition of a look-up-table (LUT)
that assigns any point of the space with a colour name as in [139, 91] and sometimes
also a membership value as in [145].

Semi-Parametric models

Semi-parametric models have parametric and non-parametric components. Usually,
these models are composed of multiple parametric components. If the number of
parametric components is elevated, the model is able to fit almost any distribution of
samples as happens with non-parametric models. Hence, semi-parametric models have
the flexibility of non-parametric models but with some of the advantages of parametric
models such as the interpretability of its parameters. Typical semi-parametric models
are mixture models and neural networks.

An example of the use of a Gaussian Mixture model in a colour task can be found
in [101] where it is applied to skin detection. Neural networks have been applied to
solve the colour constancy problem [36, 37]. In the field of colour naming Okajima
used a network model to map elemental colour responses into colour names in [111].

In this work, we will focus on parametric models. Similarly, as it has been done
in previous works, such as Mojsilovic in [103] or Seaborn et al in [124], we present
the colour-naming task as a decision problem formulated in the frame of the fuzzy-
set theory [81]. The essential difference of our proposal relies on the definition of a
parametric model, that is, we propose a set of tuneable parameters that analytically
define the shape of the fuzzy sets representing each colour category. The suitability
of such approach can be summed up in the following points:

e Inclusion of prior knowledge: Prior knowledge about the structure of the
data allows choosing the best model on each case. However, this could turn into
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a disadvantage if a non-appropriate function for the model is selected.

e Compact categories: Each category is completely defined by few parameters
and training data do not need to be stored after an initial fitting process. This
implies lower memory usage and lower computation when the model is applied.

e Meaningful parameters: Each parameter has a meaning in terms of the
characterization of the data, which allows modifying and improving the model
by just adjusting the parameters.

e Easy Analysis: As a consequence of the previous one, the model can be anal-
ysed and compared by studying the values of its parameters.

The parameters of a model must be estimated from a set of examples. This
learning process can be done in different ways [44]. Hence, learning methods are
classified in three groups according to whether the set of examples, i.e. the learning
set, is labelled or not. These three groups are the following:

Supervised learning

In supervised learning the samples used to estimate the parameters of a model
have been previously assigned with a category label or cost and the learning process
consists on minimising a cost function (i.e. the mean squared error or the number of
misclassified samples).

Unsupervised learning

In unsupervised learning or clustering, the learning sample is not previously labelled
and the process leads to the formation of clusters according to a criteria or cost
function defined in the learning algorithm.

Reinforcement learning

In reinforcement learning a labelled learning sample is not provided but the pro-
cess has feedback information. After assigning a category, the process has information
whether the category assigned is correct or not, but information about how wrong it
is, is not provided.

In colour-naming modelling, learning has normally been supervised [26, 85, 103,
124, 145]. However, unsupervised learning has also been used as in the approach
of Yendrikhovskij [159, 160] that derived colour categories from the distribution of
samples obtained from a wide set of images of natural scenes.

In our case, learning will be supervised and, we will use a set of psychophysical
data, D, composed by a set of samples from the colour space and their membership
values to the eleven categories,

D={<&mi ..mi >}, i=1,...,n, (4.1)

where §; is the ith sample of the learning set, n, is the number of samples in the
learning set and mj, is the membership value of the ith sample to the kth category.
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Such data will be the knowledge basis for a fitting process to estimate the model
parameters. The experiment presented in the previous chapter had the goal of building
an adequate psychophysical fuzzy dataset for that purpose. Hence, the fitting process
will use these data as learning set.

In the following sections, we propose different parametric models to automate the
colour-naming task. In all the cases, the procedure to build the model has been the
following:

1. Model definition.
The analysis of the psychophysical data from the experiment allows defining
the properties that the colour-naming model should fulfil. This prior knowledge
must be considered to find the analytic form of the membership functions of the
model.

2. Parameter estimation.
Estimating the model parameters implies to solve a non-linear data-fitting prob-
lem in the least squares sense, that is, finding an estimation of the parameters,
0 = (0¢c,,-..,0¢,,), that minimises the mean squared error (MSE) between the
membership values provided by the model and the set of colour-naming judge-
ments used as learning set:

1 ns 11
0= argngnn—zz:(uck(SZ;Ock) —m})? (4.2)
S =1 k=1

where:

0 is the estimation of the parameters of the model

ng is the number of samples in the learning set

o, is the membership function of the colour category Cj

s; is the ith sample of the learning set

Oc, is the set of parameters of category Cy

m$ is the membership value of the ith sample of the learning set to the kth

category.

Minimisations for the first approaches that will be presented were done by using

a subspace trust region method which is based on the interior-reflective method

proposed in [38, 39]. In the final model, minimisations were performed by using

the Nelder-Mead simplex search method proposed in [84].

3. Evaluation.
The estimated model can be evaluated in terms of different measures. Alexander
in [9] proposes three classes of measurement that can be made on models to
evaluate their performance:

e Goodness of fit to the sample distribution.
The evaluation of the fitting process will be done in terms of the mean
absolute error (M AFE;;) between the learning set memberships and the
memberships obtained from the parametric membership functions:
11 ns 11 . ~
MAEp =239 ; ; My, — ke, (57)] (4.3)
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where:

ng is the number of samples in the learning set

m} is the membership of §; to the kth category

te,, (85) is the parametric membership of §; to the kth category provided
by the model

The value of M AE};; is a measure of the accuracy of the model fitting to
the learning dataset and is used here instead of the usual MSE because
MAE is more intuitive and easily interpretable in terms of the membership
error for membership values.

The M AEy;; measure will also be computed for any individual category,
Cp, by considering only the membership function, pc,, and the member-
ship values, my, of the category being evaluated:

1 e, . .
MAEy; = o ; [my, — po,, (57)] (4.4)

o Goodness of fit to the parent distribution.
The evaluation of the fitting of the model to the real distribution can be
done by computing error measures after applying the model to data that
was not used in the learning step.

If the available sample is abundant, it can be divided in two sets: one
for learning and one for testing. In our case, these measure will only
be computed for the final proposed model because for the first proposed
models the set of available data did not suffice to build two different sets
with enough data on each.

However, to evaluate, up to a certain degree, the fitting of the estimated
models to the parent distribution we define a second measure to evaluate
the degree of fulfilment of the fuzzy unity-sum constraint. According to
the fuzzy framework in which our colour-naming model is formulated, the
sum of the memberships to the eleven colour categories for any point of
the colour space should be the unity, that is:

11
> ne,(5i0c,) =1, V8 (4.5)
k=1

Considering as error the difference between the unity and the sum of all
the memberships at a point, the measure proposed is:

1 ng 11 .
S =1 k=1

where ng is the number of samples considered and pc, is the membership
function of category Ck.
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e Classification performance.

In many previous works on colour naming [27, 96, 85, 124], results have
been evaluated in terms of the categorization of the Munsell array. To
evaluate classification performance we will also categorize the Munsell ar-
ray by computing, for each chip of the Munsell dataset, the colour-naming
descriptor, C' D(38), proposed in equation (1.19) and by applying the maxi-
mum criteria (equation (1.20)) as decision rule to assign a colour name to
each chip of the Munsell dataset.

The results of the works of Berlin and Kay [27] and Sturges and Whitfield
[135] will be used as ground truth to evaluate the models. The error mea-
sure will be the number of chips inside the boundaries proposed by Berlin
and Kay (210 of the 329 chips on the Munsell array) that are named dif-
ferently by models. In the case of Sturges and Whitfield data, the error
measure will be the number of chips from their consensus areas that are
named differently by models.

Once the model is defined, it will be possible to apply it to any given colour sample
by computing the membership of the sample to the eleven colour categories considered
that will compose the colour descriptor defined in 1.19. The information contained
in such descriptor can be used in different ways as it will be shown in Chapter 5. In
the following sections, the different proposed membership functions are presented.

4.2 A Preliminary Approach: The 3D-Gaussian Func-
tion

This first approach follows the idea of the work of Lammens [85] that assumes uni-
variate Gaussian membership functions given by:

2
EN L (si—m)?
(=2

G,(8m,o) =e¢

=

(4.7)

where N is the dimension of the colour space, 171 is the mean and o is the variance.

Using univariate Gaussian membership functions on a three-dimensional colour
space implies to assume that colour categories are spherical. This is a strong assump-
tion. In our first approach we propose to use a multivariate Gaussian as membership
function defined as a three-dimensional function, G : R* — R, given by:

(5 0g) = 45 o (49

where 0 = (m,Y) is the set of parameters of the Gaussian function, 7 is the
mean and ¥ is the covariance matrix.
Hence, each colour category, Cy will have membership function pc, :

e, (5:01) = G(5:0,), k=1,...,11 (4.9)

where 0y, is the set of parameters of the kth colour category Cj (see equation (1.21)
for the correspondence of colour categories and values of k).
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Results

For each colour category, the mean, m = (mi,ms,m3) and the covariance matrix,
3], must be estimated. As X is a symmetric 3 X 3 matrix only one semi-matrix must
be estimated. This implies that a total of 9 parameters must be estimated for each
category.

Hence, estimating the parameters of the eleven colour categories by minimising the
expression of equation (4.2) implies solving a minimisation problem of 99 variables.
For implementation issues (i.e. complexity and convergence problems) estimation for
each colour category, Ci, was done individually:

Ns

. 1 = ;
Oc, = argmin — Y " (uc, (53 6c,) — mi)? (4.10)

Oc,, Mg =

where 6, is the set of parameters of the category Ck, ns is the number of samples
in the learning set, uc, is the membership function of the colour category Cl, §; is
the ith sample of the learning set, and m/, is the membership value of the ith sample
of the learning set to the kth category.

The estimation process was done by using the learning set defined in previous
section (see equation (4.1)) and obtained from the experiment presented in Chapter
3. The parameters obtained are presented in table 4.1. The M AE;; measure defined
by equation (4.4) was computed for each colour category. The values obtained and
the total sum are presented in table 4.2.

The total error obtained means that each membership value provided by the model
has, in average, an absolute difference of 0.0393. This global value is acceptable, but
for some of the categories, such as Green, the error is too high to consider that the
model provides correct membership values.

The categorization of the Munsell space obtained by the Gaussian model can be
seen in figure 4.1 where each chip is painted with a colour representing the assigned
category (the colour palette used has no special meaning). Chips with a highest
membership lower than 0.5 are coloured in light blue meaning that they do not have
a definite colour name.

In the figure, the boundaries defined by Berlin and Kay [27] for American English
(figure 2.2) are superimposed. The chips inside the boundaries that are labelled
differently by our model are marked with a cross. A total of 46 chips inside Berlin
and Kay boundaries are wrongly labelled by the Gaussian model, which means a
21.90% of the total number of chips inside the boundaries. The same computation
was done for the results of two previous works. These are from a 35 years old English
speaker presented by MacLaury (MES) in [96] (see figure 4.2) and from Lammens
Gaussian model (LGM) [85] (see figure 2.3). Results are summarized in table 4.3.

As can be seen in the table, our Multivariate Gaussian Model obtains similar
results than previous computational Lammens model but it is far from MacLaury’s
English speaker. At this point, it is easy to see the subjectivity of the problem, since
the categorization of MacLaury’s English speaker has very important differences with
Berlin and Kay division for English of the colour space. See, for example, that Red
in the subject’s categorization overlaps the Purple region in Berlin and Kay results.
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Category m = (L,a,b) b
236.87  223.96 36.84
Red (50.23, 54.40, 31.36) < 223.96  545.05 346.59
36.84  346.95 607.27
252.77 58.33  -175.80
Orange (68.30, 22.88, 44.92) < 58.33  412.09  -244.37
-175.80 -244.37 308.05
302.91 -25.87  -206.27
Brown (43.95, 17.39, 27.38) < -25.87  309.43 18.68
-206.27 18.68 544.98
59.65 -8.65 -20.16
Yellow (87.13, -4.91, 50.21) < -8.65  606.57  -218.77
-20.16  -218.77 190.51
238.77 82.51 34.58
Green (59.40, -23.60, 19.12) < 82.51  979.89 925.42
34.58 92542 16608.00
Blue (62.65, -12.63, -24.41) -372.94  592.12  1354.20
-861.42 1354.20  4165.60

1041.50  231.18  -2189.50
Purple (47.90, 27.23, -21.19 231.18  199.16  -469.55

-2189.50  -469.55  5828.70

662.07 -259.73 -546.66
Pink (66.85, 38.20, -0.08) -259.73  353.14 202.03

-546.66  202.03 244.32

Black (32.77, -1.25, -3.61) 0.40 0.53 -2.37
253 -2.374 11.80

1859  -7.34 19.99

Grey (75.66, 0.35, -3.86) 734 56.78 32.39
19.99 3239 35144

0.18 0.81 0.55

White (96.39, 3.13, -6.14) 0.81 1.00 0.94

)
)
)
)
)
)
)
)
)
)

)
[
[
[

0.55 0.94 0.88

Table 4.1: Parameters of the Gaussian model for the eleven colour categories.
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Red Orange Brown Yellow Green Blue

MAE; 0.91 2.09 5.78 1.65 12.72 4.83
Purple Pink Black Grey  White Global

MAEy 5.09 5.65 0.19 3.91 0.39 3.93

Table 4.2: Results in terms of the MAE};; (x1072) of the Gaussian functions for
each of the 11 colour categories. The mean for all the memberships is presented as

the global error measure of the model.

" HUE

= R YR Y GY 6 BG B PB P RP
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Figure 4.1: Categorization of the Munsell colour array obtained by applying the

Gaussian model.

HUE
R YR Y GY G BG B PB
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-

o

Figure 4.2: Categorization of the Munsell colour array provided by MacLaury’s

English speaker [96].
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Model Coincidences Errors % Errors

LGM 161 49 23.33
MGM 164 46 21.90
MES 182 28 13.33

Table 4.3: Comparison of the proposed Multivariate Gaussian Model (MGM) to
other categorizations in terms of the coincidence with Berlin and Kay categorization.

Conclusion

Despite the global error of the model might seem not very high, several categories
(Brown, Green, Blue, Purple and Pink) present high individual errors which implies
that the 3D-Gaussian model is not appropriate to model them. In addition, the
categorization of the Munsell space shows too many errors when compared to the
boundaries derived by Berlin and Kay. These results brought us to conclude that a
more complex model was needed to automate the colour-naming task. In the next
section, a different approach is proposed.

4.3 Outline of the Colour-Naming Models Based on
Sigmoid Functions

If the CIELab space is sliced in a few number of levels along the L axis and all the
samples in each level are represented on a chromaticity plane, we are able to see that
the membership distributions of chromatic categories’ are not normal distributions
(figure 4.3(a)).

As can be seen in figure 4.3(b), the membership distribution that can be inferred
seems to have a triangular form, with values of 1 in the centre and a graded decrease
from membership 1 to 0 at the two sides of the triangle that are in contact with
the neighbouring categories. This vision that we can have on the two-dimensional
chromaticity plane is more difficult to be inferred in the three-dimensional colour
space.

For this reason, in our new proposal, the three-dimensional colour space is sliced
in a set of Ny, levels along the lightness axis (see figure 4.4), obtaining a set of chro-
maticity planes over which membership functions will be modelled by two-dimensional
functions.

Therefore, any specific chromatic category will be defined by a piecewise function,
te,,, depending on lightness intervals, as it is expressed in equation (4.11).

,ulck(cl,q) ifI<Il,

,u2ck(01,02) if I <I< Iy,

ey (5) = (4.11)

,U,g:(ChCQ) if INL—l <I,

IRed, Orange, Brown, Yellow, Green, Blue, Purple, and Pink
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Figure 4.3: The distributions of the membership values of chromatic categories are
not a normal distributions. (a) Representation of the samples of a given interval on
a chromaticity plane. (b) Membership values to category Green of all the samples
in the plane. The colour of the numbers indicates the category for which the sample
has its maximum membership value.
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S

Chromaticity
plane 2

Chromaticity
plane 1

Figure 4.4: Scheme of the model. The colour space is divided in N levels along
the lightness axis.

where [, ..., In, 1 are the values that define the levels and chromaticity planes along
the lightness axis. The number of chromaticity planes and the values that define them
must be defined before the estimation process and depend on the data set available
for the learning process.

As we did in previous section, we propose to work on a perceptual uniform colour

space as it is the CIELab. However, other spaces could be suitable whenever one of
the dimensions correlates with colour lightness and the other two with chromaticity
components.

For generality, while the models are being formulated, we will denote any colour

sample as § = (I, ¢y, ), where I is the lightness and, ¢; and ¢y are the chromaticity
components. For the case of models fitted on the CIELab space, samples will be de-
noted as § = (L, a, b), that is, L coordinate is identified with I and a and b coordinates
from CIELab are idetified with ¢; and ¢y respectively.

After the previous preliminary approach based on Gaussian functions, we studied

the membership distributions on the chromaticity planes obtained from the colour-
naming experiment of Chapter 3 to find the set of properties that candidates functions
should fulfil to be the adequate membership function in the colour-naming model.

The study of the membership values of the psychophysical data over a chromaticity

plane (figure 4.3) allowed us to define the desirable properties that should fulfil a
membership function, pc, (1, ce), for the chromatic categories in a given chromaticity
plane:

e Bounded: Membership values provided must be in the [0, 1] interval, i.e. pc, (c1,c2) €
(0,1]
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o Triangular basis: Membership functions present a triangular shaped basis with a
principal vertex shared by all the categories. Within this basis, the distribution
of the membership values forms a triangular plateau with all the colours that
do not present confusion on its name assignment (i.e. membership value equal
to one) on top of it.

o Asymmetry: Membership functions have parameters controlling the slope of
naming certainty towards the neighbouring categories. These slopes can be
different on each side of the category.

e Central shift: Membership functions have parameters allowing a shift of the tri-
angular plateau of membership one with respect to the bisector of the triangular
basis of the category.

In figure 4.5 we show an scheme of the preceding conditions on a chromaticity diagram
where the samples of the colour-naming experiment have been plotted.

80 Green
® Blue
v Purple
e Pink
2 Orange
40r @ Yellow
c ©
)
20f £ Principal vertex
b | TE P
o 9
QO
or § Bisector
=
-20r Shift from bisector
-401 ) R . .
Triangular Basis - Membership transition
of membership 1 E from1to 0
-60 L | 3 | | | )
-60 -40 -20 0 20 40 60 80

a

Figure 4.5: Desirable properties of the membership function for chromatic cate-
gories. In this case, on the Blue category.

Achromatic categories? will be modelled as a unique category on each chromaticity
plane to differentiate them from chromatic ones. Differentiation between the three
achromatic categories will be done only in terms of lightness.

In the following sections, we propose different membership functions for chromatic
and achromatic categories, but in all the cases, the outline of the model is the one
defined in this section.

2Black, Grey, White
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4.4 Membership Functions for Fuzzy Colour Naming

In this section we detail different parametric functions proposed as membership func-
tions. The results obtained with each proposed function are analysed and the model
is evolved to improve its performance. The problems detected in these approaches
have allowed us to set the basis of the final proposed model, the Triple-Sigmoid with
Elliptical Centre (TSE) function.

4.4.1 The Sigmoid-Gaussian Function

The outline and the properties defined in the previous section are the basis to pro-
gressively find adequate functions to model the memberships to colour categories. As
we saw in previous section, the functions to model memberships to chromatic and
achromatic categories must be considered separately. In the following paragraphs the
functions used to model both types are explained in detail.

Chromatic Categories

After defining the properties that the membership function for chromatic categories
must fulfil, an adequate function must be defined. The proposed function in this
section is a combination of two well-known functions: the sigmoid and the Gaussian
functions. The proposed function, named Sigmoid-Gaussian (SG) [20, 23] from now
on, is defined as a two-dimensional function, SG : R? — R.

The definition of the SG starts from the one-dimensional sigmoid function:

1

S(z; B) =
where (3 controls the slope of the transition from 0 to 1 (see figure 4.6(a)).
This can be extended to a two-dimensional sigmoid function, S : R? — R, as:

N 1 .
S(p,ﬂauz)* mv Z*LQ (413)
where p'= (z,y) is a point in the plane, and vectors @; = (1,0) and @y = (0, 1) define
the axis in which the function is oriented (see figure 4.6(b)).

For simplicity, we will denote S(p; 8, 1) as Sy and S(p; 3, Uz) as Se. By multiply-
ing S7 and S5 we define a function, Ss, which fulfils the first three properties proposed
before:

where (3, is the slope of the sigmoid oriented in the z-axis and 3, is the slope of
the sigmoid oriented in the y-axis. Figure 4.7(a) shows an example of this function.

To achieve the last property, we propose to modulate the sigmoid with a Gaussian
function in the direction perpendicular to the bisector of the category defined as:

T—y 2
V2 "‘)

o

G(p:m, o) = eié< (4.15)
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08

0.6
S(x)
0.4

02

030 5 0 5 10

Figure 4.6: Sigmoid functions. (a) Sigmoid function in one dimension. The value
of 3 determines the slope of the function. (b) Sigmoid function in two dimensions.
Vector 4; determines the axis in which the function is oriented.

where m is the mean and o is the standard deviation. Note that the value w—\;iy is

the distance of a point (x,y) to the line z = y. Figure 4.7(b) shows an scheme of the
purpose of this function.

Figure 4.7: Sigmoid-Gaussian components. (a) Function S3 as a result of the
product of two 2D-sigmoids. (b) A 1D-gaussian function is used to modulate the
sigmoid in the direction x = y. For a point (zo, yo) the sigmoid function is modulated
by the value of the Gaussian at the position d = (o — y0)/+/2, which is the distance
of point (zo,yo) to line z = y.

Hence, the final expression of the function defined on the first quadrant of the
space is:
SG(IZ ﬂm:ﬂgpma O') = ‘5'3(175 ﬂxaﬁy) : G(p: m,a) (4]‘6)

By adding a translation, t = (tz,ty), and a rotation, «, to the previous equation,
the function can be fitted to all the categories at the different locations of the chro-



66 A PARAMETRIC MODEL FOR COLOUR NAMING

matic plane. In order to represent the formulation in a compact matrix form, we
will use homogeneous coordinates [64]. Let us redefine p’ to be a point in the plane
expressed in homogeneous coordinates as 7 = (z,y, 1), and let us denote the vectors
41 = (1,0,0) and @2 = (0,1,0). The resulting function is:

2

NI

. 1 1 -
SG(Pi0sc) = 5 T e BuinRalid |+ ¢ BriaRalip ©

) RaTyp—iigRaTip
V2

’ m) (4.17)

where 0g¢ = (1, a, Bz, By, m,0) is the set of parameters of the Sigmoid-Gaussian
function, and T; and R, are a translation matrix and a rotation matrix respectively:

1 0 —ty cos(a)  sin(a) O
T, = ( 0 1 —ty ) Ro = ( —sin(a) cos(a) 0 ) (4.18)
0 0 1

0 0 1

Figure 4.8, shows the shape of the SG function.

SG(x.y)

Figure 4.8: Example of the Sigmoid-Gaussian function.

Hence, once we have the analytic form of the chosen function, the membership
function, pc, , for a chromatic category, Cy, is given by:

/Llck zSG(cth;Hék) lfISIh

2 2 .
17 :SG(Cl,CQ;9 ) if Iy <I<Is,
ne () =14 w“ (4.19)

pet = SG(er,e;00F) if Iy 1 <1,
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where §= (I, c1, ¢c2) is a sample on the colour space, Ny, is the number of chromaticity
planes (i.e. lightness levels), Hick is the set of parameters of the category C} on the
ith chromaticity plane and I; are the lightness values that divide the space in the N,
lightness levels.

Achromatic Categories

Due to their position in the chromatic plane the three achromatic categories (Black,
Grey and White) are first considered as a unique category at each chromaticity plane,
and the global achromatic membership, p4, is modelled for each level with a multi-
variate two-dimensional Gaussian function:
phler, c) = o~ 3 ((c1,c2)=m) TS ((e1,c2)—) (4.20)

where ¢ is the lightness level that contains the sample § = (¢1,co,I), m is the mean
and ¥ is the covariance matrix.

The differentiation between the three achromatic categories must be done in terms
of lightness. To model the fuzzy boundaries between these three categories we use
one-dimensional Gaussian functions along the lightness axis:

pac, (I10c,) = 67%( o) 9<k<1 (4.21)

where ¢, = (my,01) is the set of parameters for category Cy, with values of k from 9
to 11 which are the values that correspond to the achromatic categories (see equation
(1.21)). Figure 4.9 shows an scheme of this division along the lightness axis.

=" Mablack

— L

Agrey

Hawhite

Membership

mg
Lightness
Figure 4.9: Sigmoid functions are used to differentiate between the three achromatic

categories.

Hence, the membership to the three achromatic categories of a given sample is
computed by weighting the global achromatic membership (equation (4.20)) with the
corresponding membership in the lightness dimension (equation (4.21)):

pe, (8:0c,) = (e, c2) prac, (I3 0cy), 9<k<1l, L <I<IL4y (422

where ¢ is the lightness level in which the sample is included and the values of &
correspond to the achromatic categories (see equation (1.21)).
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Results

Once the Sigmoid-Gaussian colour-naming model has been defined, the next step is
to estimate the parameters for each membership function. The number of lightness
levels was set to three, i.e. Ny, = 3, and the values that divide them were set at L=>55
and L=75. These values were chosen in order to isolate some categories in only one
or two of the intensity levels (i.e. Yellow is only present for high intensity and Orange
does not appear for low intensity), because this fact provided the best results in the
fitting process.

At each lightness level, the parameters of the function must be estimated for each
colour category by fitting the function to the samples included in that level. The
parameters obtained as a result of the estimation process are presented in table 4.4.

The results in terms of the fitting error M AEy;; for all the categories (equation
(4.4)) are presented in table 4.5. The global fitting error of the model (equation (4.3))
is 0.0281. If these results are compared with the obtained for the Gaussian model,
we can see that the improvement is important for some of the categories (e.g. Green,
Purple and Pink), although other categories (e.g. Red and Yellow) have higher fitting
error. Globally, the results confirm that the proposed Sigmoid-Gaussian model is
modelling the colour categories better than the Gaussian model.

To compute the M AE, itsum error measure (equation (4.6)), we have sampled
each of the chromaticity planes with values from -80 to 80 at steps of 0.5 units on
both a and b axis, which means a number of points n,, = 76800. The value obtained
of MAFE nitsum = 0.3612 indicates that the model does not provide a good fulfilment
of that constraint. The value of the measure means that, in average, the sum of the
memberships for each point is of only 0.6388 and, therefore, some areas of the space
are not well modelled.

The categorization of the Munsell array obtained with the Sigmoid-Gaussian
model is presented in figure 4.10. As we did in the Gaussian model, each chip is
painted with a colour representing the assigned category. Chips without a definite
colour term, that is, a highest membership value below 0.5, are coloured in light blue.

The Sigmoid-Gaussian categorization has a total of 35 chips inside Berlin and Kay
boundaries named differently. This means an error rate of 16.67%. Table 4.6 shows a
summary of the categorization considered up to now (the proposed Sigmoid-Gaussian
model (SGM), Lammens Gaussian model (LGM), [85], an English speaker presented
by Maclaury (MES) in [96], and the previously proposed Multivariate Gaussian model
(MGM)).

The results show that the Sigmoid-Gaussian model improves the results of the
previous Multivariate Gaussian model but in some areas there are still too many errors
to produce a coherent categorization. Although the errors with respect to Berlin and
Kay and to MacLaury’s English speaker have been reduced, the differences are still
considerable.

Despite the improvements obtained by the model, some problems can be noticed.
The effect of the Gaussian, which is useful for some of the categories, is counterpro-
ductive for others such as Green or Blue. As the Gaussian is multiplying the product
of the two sigmoids, to obtain a wide plateau we need to have a high value of o.
Anyway, the plateau is never a perfect one since the Gaussian has a smoothing effect
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Achromatic axis

Black m = 30.72 o =28.08
Grey m = 74.60 o = 28.76
White m = 98.52 o=2.80
Chromaticity plane 1

. - 26.54 —2.59
Achromatic m = (—0.87,—4.60) 3= < 959 5154 )

tq ty Q Ba By m o

Red 0.78 5.53 -0.04 110.03 427.05 15.16 6.47
Brown 0.78 4.53 -0.11 1.10 0.24 -9.01 14.62
Green 1.78 4.61 -1.80 123.30 4.35 3448 131.26
Blue 0.78 5.53 2.71 0.24 0.68 -81.40 167.35
Purple 1.14 4.56 1.30 18.30 96.97 0.26 17.32
Pink 1.01 5.31 0.21 8.80 165.78  23.99 3.81

Chromaticity plane 2

. N 41.93 3.56

Achromatic m = (0.15, —5.49) Y= ( 356 3041 )

tq ty o Ba ﬁb m o
Red 0.32 533 045 50.23 210.41 -15.83 7.14
Orange -0.45 5.12 -0.67 6.24 1070.20 19.73 13.41
Brown -0.47 5.12 -1.00 92.90 195.87  14.25 4.83
Yellow 0.08 591 0.90 19.04 51.59 0.50 0.21
Green 0.53 5.68 -1.52 92.74 39.25 0.35 29.58
Blue -0.21 6.12 2.80 0.45 22.40 -1.88 39.16
Purple -0.47 6.12 1.33 348.97 0.63 3.65 11.75
Pink -0.47 571 0.68 208.64 31.60 -1.41 12.93
Chromaticity plane 3

. - 13.15 —7.09

Achromatic m = (1.24,-3.27) Y= ( 709 5855 )

ty tp a /811 /Bb m g
Orange -1.84 327 -0.71 57.54 38.67 4.25 2.06
Brown -0.87 2.46 -0.84 0.00 0.79 2.39 1.74
Yellow -1.57 275 -0.94 130.36 53.80 0.46 0.26
Green -0.87 3.14 -1.81 0.23 41.75 19.14 36.78
Blue -1.13 346 -2.76 173.15 60.72 -8.74 10.60
Purple -1.87 3.46 1.82 0.61 0.49 -7.22 6.34
Pink -1.87 246 0.35 1.71 1.03 37.62 53.84

Table 4.4: Parameters of the Sigmoid-Gaussian model.
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Red  Orange Brown Yellow Green Blue

MAE 1.62 2.24 4.10 3.79 6.55 3.08
Purple Pink Black Grey  White Global

MAEs; 295 2.92 0.23 2.96 0.48 2.81

Table 4.5: Results in terms of the M AFE;; (x1072) of the Sigmoid-Gaussian func-
tions fitting for each one of the 11 colour categories considered. In the last column,
the global measure of error of the model.

HUE

R YR Y GY G BG B PB P RP
25 5 7510 25 5 7.5 10 25 5 7.5 10 25 5 7.5 10 25 5 7.5 10 25 5 7.5 10 25 5 75 40 25 5 75 10 25 5 15 40 25 5 15 10

« VALUE

Figure 4.10: Categorization of the Munsell colour array obtained by applying the
proposed Sigmoid-Gaussian model. Differences to Berlin and Kay categorization are
marked with a cross.

Model Coincidences Errors % Errors

LGM 161 49 23.33
MGM 164 46 21.90
SGM 175 35 16.67
MES 182 28 13.33

Table 4.6: Comparison of the different categorizations in terms of the coincidence
with Berlin and Kay categorization.
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over the surface formed by the product of the two sigmoids. Another drawback of
the Sigmoid-Gaussian function is that it does not allow having membership functions
covering a surface wider than an angle of 7 and this makes that categories such as
Green can not be correctly modelled. This lack of flexibility of the function makes that
in some regions of the colour space the sum of the membership values for the eleven
colour categories is not the unit, as it should be according to the fuzzy framework.

4.4.2 The Double-Sigmoid Function

As we have seen in the previous section, the Sigmoid-Gaussian function present some
drawbacks. Firstly, the Sigmoid-Gaussian used as membership function was not suit-
able for some of the categories (e.g. Green and Blue) due to its lack of flexibility to
adopt the form presented by these categories. Secondly, there were some regions of
the colour space where the sum of the membership values for the eleven colour cate-
gories was not the unit, as it should be according to a fuzzy framework. To overcome
the problems of the Sigmoid-Gaussian model, we propose a new membership function
for chromatic categories based only on the product of two sigmoids.

The new proposed function, the Double-Sigmoid (DS) function [22], is a two-
dimensional function, DS : R? — R, and its definition is based on the functions
defined by equation (4.13).

Let us add a translation, t = (t,, ty), and a rotation, «, to the function of equation
(4.13). Thus, we redefine S; as a function with orientation o with respect to axis y
and Sy as a function with orientation a with respect to axis x:

1 .
= WM, 1 = 1,2 (423)

Si (f); E: «, /8)
where T} and R,, are a translation matrix and a rotation matrix respectively (equation
(4.18)).

By multiplying S; and Sy we define the DS function, which fulfils the properties
proposed before in 4.4.1, but avoiding the use of the Gaussian function:

DS(p:t,0ps) = S1(B: T, vy, By) - S2 (B E, B2 (4.24)

where Opg = (ag, oy, Bz, By) is the set of parameters of the Double-Sigmoid function.
Functions Sy, Se and DS are plotted in figure 4.11.

Hence, once we have the analytic form of the chosen function, the membership
function for a chromatic category, uc,, is given by:

Wl = DS(er,exifl) 1<,
M%k = DS(ChCQ;Q%k) ifh <I< I,

pe, (8) = (4.25)

/”Lg: :DS(CDCQ;egL) if INLfl < I7

k

where §= (I, ¢y, o) is a sample on the colour space, Ny, is the number of chromaticity
planes, 0¢, is the set of parameters of the DS function of the category Cy on the ith
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DS{xy)
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0.5+

(¢) DS(z,y)

Figure 4.11: Two-dimensional sigmoid functions. (a) S1: Sigmoid function oriented
in axis y direction (b) Sa: Sigmoid function oriented in axis x direction (c) DS: The
product of two differently oriented sigmoid functions generates a plateau with some
of the properties needed for the membership function.



4.4. Membership Functions for Fuzzy Colour Naming 73

chromaticity plane and I; are the lightness values that divide the space in the Np,
lightness levels.

The fact that each sigmoid of the function has a different rotation angle allows
varying the wideness of the plateau. Hence, this new function solves one of the prob-
lems detected on the Sigmoid-Gaussian model. The effect of the two angles is similar
to the product by the Gaussian function, but it does not have the smoothing effect
of the Gaussian that did not allow wide plateaus in the previous model. Therefore,
the new function is more flexible and allows a wider range of shapes by just varying
the parameters.

The modelling of achromatic memberships is done in the same way as in the model
based on the Sigmoid-Gaussian (see section 4.4.1).

Results

The parameter estimation was done following the same procedure as in the case of the
Sigmoid-Gaussian function. The parameters obtained for the Double-Sigmoid model
after this fitting process are presented in table 4.7.

As in the previous models, the M AFE¢;; was computed for each colour category
and in global. The values obtained are shown in table 4.8.

The value of M AEy;; of the model is 0.0304. This value is slightly higher than for
the Sigmoid-Gaussian model. Instead, the value of MAE,;tsum® was of 0.1219 and
shows a great improvement with respect to the Multivariate Gaussian and Sigmoid-
Gaussian models for which M AFE,,,i¢sum Was 0.8206 and 0.3612 respectively. Despite
this improvement, the fulfilment of the fuzzy constraint is still not satisfactory enough.
Furthermore, one area where we observed that the fuzzy constraint of unit sum was far
from being achieved, was the one corresponding to the achromatic categories. Table
4.9 summarizes these results.

The evaluation in terms of the categorization of the Munsell array can be seen
in figure 4.12. The number of mislabelled chips inside Berlin and Kay boundaries is
reduced to 28, which is the same value of the English speaker of [96] as can be seen
in table 4.10.

Although the function proposed in this section, the DS function, improves the
results in terms of the Munsell categoriation of the previous approaches, the model
still presents some drawbacks. The most important is that the fuzzy constraint of
unity sum is not fulfilled in several areas of the colour space. The most evident as
we mentioned above was in the areas close to achromatic categories. We try to solve
this problem with the next proposed funcion, the Triple-Sigmoid with Circular centre
function.

4.4.3 The Triple-Sigmoid with Circular Centre Function

The next function we propose, which we will refer as Triple-Sigmoid with Circular
centre (TSC) [22], is a modification of the previous model (see equation (4.24)). The
TSC function is defined as a two-dimensional function, T.SC : R? — R.

3The sampling of the colour space used to compute the measure was explained in section 4.4.1
and was the same for the three models
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Achromatic axis

Black m = 30.72 o =8.08
Grey m = 74.60 o = 28.76
White m = 98.52 o= 2.80
Chromaticity plane 1
. o 26.54 —2.59
Achromatic m = (—0.87,—-4.60) X = < 959 5154 >
ty ty Qq Qp Ba Bb
Red -1.28 -5.03 0.23 0.90 50.00 50.00
Brown -0.78 -4.53 0.74 -0.08 67.46 0.27
Green -1.78 -4.53 1.61 -2.07 0.46 2.39
Blue -1.78 -5.53 -2.65 2.84 16.44 0.67
Purple -1.02 -5.01 -1.02 1.45 50.00 11.87
Pink -1.28 -5.03 0.00 1.28 56.76 3.43
Chromaticity plane 2
. . 41.93  3.56
Achromatic ~ m = (0.15,—-5.49) X = ( 356 3041 )
tq ty Qg ap ﬁa ﬁb
Red -0.13 -523 0.54 0.79 0.36 34.52
Orange -0.03 -5.56 0.86 0.10 62.78 57.91
Brown -0.05 -5.12 1.32 0.01 52.22 3.20
Yellow -0.01 -5.60 1.62 -0.05 78.48 49.73
Green -0.11 -5.12 1.60 -1.86 15.71 17.62
Blue -0.01 -6.12 -2.98 291 42.41 7.81
Purple -0.03 -5.62 -0.93 196 60.79 59.31
Pink 0.05 -5.66 -0.25 1.06 57.17 59.50
Chromaticity plane 3
. - 13.15 —-7.09
Achromatic  m = (1.24,—3.27) Y= < 709 5855 >
ta ty Qg ap Ba Bb
Orange 1.87 -3.06 1.23 0.19 11.59 49.96
Brown 1.87 -246 1.63 -0.07 26.16 1.36
Yellow 1.32 -2.62 1.52 -0.25 53.46 47.12
Green 0.87 -3.18 181 -1.61 0.18 38.08
Blue 0.87 -3.46 -3.08 3.03 39.88 0.42
Purple 1.87 -2.50 -1.16 1.91 238.55 2.73
Pink 1.37 -296 -0.32 0.42 50.00 45.89

Table 4.7: Parameters of the Double-Sigmoid model.
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Red Orange Brown Yellow Green Blue

MAEy; 1.82 2.26 4.92 4.55 5.44 3.05
Purple  Pink Black  Grey White Global

MAE¢: 367 4.06 0.23 2.96 0.48 3.04

Table 4.8: Results in terms of the M AE;; (x1072) of the Double-Sigmoid functions
for each one of the 11 colour categories considered. In the last column, the global
measure of error of the model.

Model MAEﬁt MAEunitsum

MGM 0.0393 0.8206
SGM 0.0281 0.3612
DSM 0.0304 0.1219

Table 4.9: Results obtained by the three models (Multivariate Gaussian(MGM),
Sigmoid-Gaussian(SGM) and Double-Sigmoid(DSM)).
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> 25 5 7510 25 5 75 10 25 5 15 10 25 5 7.5 10 25 5 7.5 10 25 5 75 10 25 5 75 10 25 5 7.5 10 25 5 15 10 25 5 75 10
9
XX
7
6 X X
5
4
3 X
2 X X I X
1

Figure 4.12: Munsell categorization obtained by the Double-Sigmoid model.

Model Coincidences Errors % Errors

LGM 161 49 23.33
MGM 164 46 21.90
SGM 175 35 16.67
MES 182 28 13.33
DSM 182 28 13.33

Table 4.10: Comparison of the different categorizations in terms of the coincidence
with Berlin and Kay categorization. The categorizations evaluated are Lammens
Gaussian Model (LGM), MacLaury’s English speaker (MES), the Multivariate Gaus-
sian Model (MGM), the Sigmoid-Gaussian Model (SGM) and the Double-Sigmoid
Model (DSM).

75
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To formulate the TSC function, first let us define the Circular-Sigmoid (CS) func-
tion by including the circumference equation in the sigmoid formula:

1

m( (ﬁthﬁ)2+(ﬁ2Ttﬁ)27r2>

where p = (z,y) is a point in the plane, 8cg = (8., r) is the set of parameters
of the Circular-Sigmoid function, (. is the slope of the sigmoid curve that forms
the circumference boundary, and r is the radius of the circumference. The function
obtained is a circular plateau if 3. is negative and a circular valley if 3. is positive.
The functions obtained can be seen in figure 4.13.

CS(7;t,0cs) = (4.26)

l+e

CS(x¥) CS(xy)

1 1

05 05

Figure 4.13: Circular-Sigmoid function CS(p:t,0cs). (a) CS for B. < 0 (b) CS for
Be >0

Hence, we define the Triple-Sigmoid with Circular centre(TSC) by multiplying the
Double-Sigmoid and the Circular-Sigmoid with a positive (., as:

TSC(p,0rsc) = DS(p:t,0ps) - CS(B;t,0cs) (4.27)

where Orsc = (5, Ops,fcs) is the set of parameters of the TSC.

The TSC function fulfils the properties defined at the beginning of section 4.3.
Figure 4.14 shows the form of the TSC function.

The effect of the third sigmoid allows improving the modelling of the central area of
the colour space, that is, the boundary between chromatic and achromatic categories.

Hence, once we have the analytic form of the chosen function, the membership
function for a chromatic category, e, , is given by:

pg, =TSC(er,e0308,) i 1<,
M%k :TSC<01702;8%'k) ifl <I< I,

ey (5) = (4.28)

plE = TSC(er,e2;05) if Iny—1 < 1,
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Figure 4.14: Triple-Sigmoid with Circular centre (TSC).

where §= (I, ¢y, co) is a sample on the colour space, Ny, is the number of chromaticity
planes, 0¢, is the set of parameters of the category Cj, on the ith chromaticity plane
and I; are the lightness values that divide the space in the Ny, lightness levels.

Results

The parameter estimation was done following the same procedure used for the previous
models. The parameters obtained for de TSC model after this fitting process are
presented in table 4.11.

As in the previous models, the M AE;;; was computed for each colour category
and in global. The values obtained are shown in table 4.12.

The TSC model improves the results of the DS model in terms of the MAEy;;
but the improvement is small. In fact, while some categories such as Blue are better
modelled with the TSC model, other categories such as Brown are worse modelled.
The value of M AFE,,itsum, which for the TSC model is 0.1135, is also improved but,
again, the improvement is not significant. Table 4.13 summarizes these results.

The categorization of the Munsell array obtained with the TSC model is shown
in figure 4.15.

The comparison with the previous categorizations (Table 4.14) shows that the
TSC model improves the results and has even less Munsell chips labelled different
with respect to Berlin and Kay boundaries than a real English speaker. However,
some of the errors, such as some chips at the areas of highest or lowest value which
are labelled with achromatic names, must be improved.

As a conclusion of this section, we must say that although the global results
obtained with the TSC function are slightly better than the ones obtained with the
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Achromatic axis

Black m = 30.72 o =8.08
Grey m = 74.60 o = 28.76
White m = 98.52 o =280
Chromaticity plane 1
. - 26.54 —2.59

Achromatic m = (—0.87,—4.60) ¥ = ( 959 5154 )

ty ty Qg Qp Ba ﬂb Bc T
Red -1.28 -5.03 0.23 0.90 50.00 50.00 50.00 0.01
Brown -0.98 -5.33 0.74 -0.07 0.65 0.30 35.86 14.14
Green -1.18 -5.13 1.65 -2.03 0.46 0.58 20.97 14.13
Blue -0.78 -5.53 -2.68 2.69 0.27 0.57 37.18 12.82
Purple -1.02 -5.01 -1.02 1.45 50.00 13.31 50.00 0.01
Pink -1.28 -5.03 0.01 1.28 54.28 113.90 50.00 0.01
Chromaticity plane 2

. . 41.93  3.56

Achromatic m = (0.15,—5.49) Y= ( 356 3041 )

tq ty Qg ap ﬁa ﬁb ﬁc r
Red -0.04 -5.21 0.54 0.80 5.57  26.05 44.74 2.35
Orange -0.03 -5.62 0.86 0.10 50.05 57.48 49.96 0.06
Brown -0.05 -5.32 1.32 0.01 54.04 3.38 48.85 -0.70
Yellow -0.02 -5.63 1.62 -0.05 50.02 49.87 50.00 0.03
Green -0.03 -5.52 1.61 -1.78 0.21 109.19 48.05 1.18
Blue -0.04 -6.11 -2.98 290 40.26 5.66  6.06 0.42
Purple -0.03 -5.62 -0.93 1.96 70.71  50.05 49.99 0.08
Pink -0.02 -5.63 -0.25 1.06 61.86 50.00 47.31 0.08
Chromaticity plane 3
Achromatic m = (1.24,-3.27) Y= ( _1§(1)g5) _5;(5)2 )

tq tp Qg ap ﬁa /Bb 5c T
Orange 1.87 -346 1.24 0.11 1746 49.86 50.00 0.01
Brown 1.67 -2.66 1.62 -0.07 4.88 1.16 50.00 0.01
Yellow 1.18 -246 1.64 -0.25 64.84 1.12  50.00 0.01
Green 1.27 -2.86 1.82 -1.64 0.22 0.65 50.00 0.01
Blue 0.87 -3.46 -3.08 3.03 39.82 0.42 50.00 0.01
Purple 1.87 -2.50 -1.16 1.91 237.39 2.73  50.00 0.01
Pink 1.37 -296 -0.32 042 50.00 45.89 50.00 0.01

Table 4.11: Parameters of the Triple-Sigmoid with Circular centre model.
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Red  Orange Brown Yellow Green Blue

MAEy 1.92 2.24 5.26 4.15 5.40 2.38
Purple Pink Black Grey  White Global

MAEs;  3.67 4.07 0.23 2.96 0.48 2.98

Table 4.12: Results in terms of the MAE; (x1072) of the Triple-Sigmoid with
Circular centre functions for each one of the 11 colour categories considered. In the
last column, the global measure of error of the model.

Model MAEﬁt MAEunitsum

MGM 0.0393 0.8206
SGM 0.0281 0.3612
DSM 0.0304 0.1219
TSCM 0.0298 0.1135

Table 4.13: Results obtained by the four models proposed up to now (Multivari-
ate Gaussian (MGM), Sigmoid-Gaussian (SGM), Double-Sigmoid (DSM) and Triple-
Sigmoid with Circular centre (TSCM)).
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Figure 4.15: Munsell categorization obtained by the Triple-Sigmoid with Circular
centre model.
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Model Coincidences Errors % Errors

LGM 161 49 23.33
MGM 164 46 21.90
SGM 175 35 16.67
MES 182 28 13.33
DSM 182 28 13.33
TSCM 185 25 11.90

Table 4.14: Comparison of the different categorizations in terms of the coincidence
with Berlin and Kay categorization. The categorizations evaluated are Lammens
Gaussian Model (LGM), MacLaury’s English speaker (MES), the Multivariate Gaus-
sian Model (MGM), the Sigmoid-Gaussian Model (SGM), the Double-Sigmoid Model
(DSM), and the Triple-Sigmoid with Circular centre Model (TSCM).

DS function, the improvement is not significant because as can be seen comparing
tables 4.8 and 4.12 the error decrease is concentrated in only two of the categories
(Yellow and Blue), while for the rest of the categories the error increases or the
decrease is minimal. Therefore, the TSC function has the same drawbacks noticed
on the evaluation of the DS results. As we saw before, although the fitting error,
MAEy;, is acceptable, the value of M AE,itsum is still high which means that in
some areas of the colour space the sum of the memberships for all the categories is far
from the unity. This fact can be noticed on the obtained Munsell categorization where
some areas do not have any category with membership above the threshold of 0.5. In
addition, we have noticed that there are some errors on the Munsell categorizations
which are concentred in the extremes of the lightness scale, that is, the samples with
low and high value in the Munsell system. This problem is due to some deficiencies of
the learning set with these samples that, in some cases, were unavailable. The fact that
the fitting error is not high but the unity-sum error and the Munsell categorization
are not satisfactory could also indicate some deficiencies of the learning set used or
in the estimation step performed up to now.

4.5 The Final Colour-Naming Model

As we have seen in the previous section, the Triple-Sigmoid with Circular centre is
the function among the proposed that obtains the best results in terms of the error
measures defined and in terms of the categorization of the Munsell space. However,
we also pointed out some problems that should be solved if a successful model for
colour naming is desired.

In this section we will propose some variations on the previous models to obtain
our final proposal, the Triple-Sigmoid with Elliptical centre function [25].

4.5.1 The Triple-Sigmoid with Elliptical Centre Function

The analysis of the results obtained with the previous functions, brought us to propose
some modifications on the colour-naming models proposed in the previous sections:
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1. The modelling of chromatic categories will be improved by redefining some of
the properties that membership functions for chromatic categories should fulfil.
To this end, a variant of the TSC function will be proposed.

2. Achromatic categories* are given as the complementary function of the chro-

matic ones but weighted by the membership function of each one of the three
achromatic categories. These functions are also improved by using one-dimensional
sigmoid functions instead of the Gaussian functions used before.

3. A wider learning set will be used to solve the problems presented by the learning
set used in the previous models.

4. The parameter estimation process will be changed to consider the fuzzy con-
straint (i.e. the sum of all memberships at a given point must be one) and thus
reduce the unity-sum error (M AE,itsum)-

In the following sections, the new proposed model is detailed.

Chromatic Categories

The fuzzy framework defined previously, the observation of the membership values of
psychophysical data obtained from the colour-naming experiment, and the feedback
from the previous proposed models (SG, DS, and TSC) made us to redefine the set of
necessary properties that membership functions for the chromatic categories should
fulfil:

e Bounded: Membership values must be in the [0,1] interval, i.e. pc, (5) € [0,1]

e Triangular basis: Chromatic categories present a plateau, or area with no con-
fusion about the colour name, with a triangular shaped basis and a principal
vertex shared by all the categories.

o Asymmetry: For a given chromatic category the slope of naming certainty to-
wards the neighbouring categories can be different on each side of the category
(e.g. transition from Blue to Green can be different to that from Blue to Purple).

e Central notch: The transition from a chromatic category to the central achro-
matic one has the form of an elliptical notch around the principal vertex.

In figure 4.16 we show an scheme of the preceding conditions on a chromaticity
diagram where the samples of the colour-naming experiment have been plotted.

The Triple-Sgimoid with Elliptical centre function (TSE) is a generalization of the
TSC proposed in the previous section. The functions proposed previously, fulfilled the
first three properties defined above. The TSC function included a Circular-Sigmoid
function to model the boundary between chromatic and achromatic categories. Now,
we propose to change this circular shape. To obtain the central notch shape needed to

4Black, Grey and White
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Figure 4.16: Desirable properties of the membership function for chromatic cate-
gories. In this case, on the Blue category.

fulfil the fourth proposed property, let us define the Elliptical-Sigmoid (ES) function
by including the ellipse equation in the sigmoid formula:

1
o (B (2me) )

where Opg = (e4, €y, @, Be) is the set of parameters of the Elliptical-Sigmoid func-
tion, e, and e, are the semiminor and semimajor axis respectively, ¢ is the rotation
angle of the ellipse, and [, is the slope of the sigmoid curve that forms the ellipse
boundary. The function obtained is an elliptical plateau if . is negative and an
elliptical valley if 3. is positive. The surfaces obtained can be seen in figure 4.17.

Finally, by multiplying the Double-Sigmoid and the Elliptical-Sigmoid with a pos-
itive 8., we define the Triple-Sigmoid with Elliptical centre (TSE) as:

ES(pit,0ps) = (4.29)

l+e

TSE(p;0) = DS(5;t,0ps) - ES(B: 1, 0ps) (4.30)

where 6 = (i,0psg, Ops) is the set of parameters of the TSE.

The TSE function defines a membership surface that fulfils the properties defined
above. Figure 4.18 shows the form of the TSE function.

Hence, once we have the analytic form of the chosen function, the membership
function for a chromatic category, pc,, is given by:

/‘lck :TS’E(cth;chk) if I <1y,
2 2 :
e, :TSE(Cl,CQ;GC’) if [ <1< 1o,
po () =9. " o (4.31)

/‘g;f = TSE(01a02;9gL) if In, 1 <1,

k
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Figure 4.17: Elliptical-Sigmoid function ES(7;7,0gs). (a) ES for . < 0 (b) ES for
Be >0
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Figure 4.18: Triple-Sigmoid with Elliptical centre (TSE).
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where §= (I, ¢y, c2) is a sample on the colour space, Ny, is the number of chromaticity
planes, HiCk is the set of parameters of the category Cj on the ith chromaticity plane
and I; are the lightness values that divide the space in the N, lightness levels.

By fitting the parameters of the functions, it is possible to obtain the variation of
the chromatic categories through the lightness levels. Doing this for all the categories,
it will be possible to obtain membership maps, that is, for a given lightness level we
have a membership value to each category for any colour point §= (I, ¢1,c2) of the
level. Figure 4.19 shows an example of the membership map provided by the TSE
functions for a given lightness level.

membership
o
[hg]

[am)

Figure 4.19: TSE function fitted to all the chromatic categories on a given lightness
level.

Achromatic Categories

The three achromatic categories (Black, Grey and White) are first considered as a
unique category at each chromaticity plane. To ensure that the fuzzy constraint
is fulfilled (i.e. the sum of all memberships must be one) the global achromatic
membership, p4, is computed for each level as:

paler, ) =1 =Y pg, (1, c2) (4.32)
k=1

where 7 is the chromaticity plane that contains the sample § = (1, ¢2,I) and n. is the
number of chromatic categories (in our case, n. = 8). The differentiation between the
three achromatic categories must be done in terms of lightness. To model the fuzzy
boundaries between these three categories we use one-dimensional sigmoid functions
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along the lightness axis:

1
A p ok (L OBlack) = T o Bi—t) (4.33)
;0 = . : 4.34
ILLAG'r'ey( ) G’rey) = T BTt . T Rt ( . )
1
HAwhite (L5 Ownite) = (4.35)

1+ ePul—tw)

where HBlack = (tb)ﬁb)a eGrey = (tb76b7tw76’w)7 and HWhite = (twaﬁw) are the set of
parameters for Black, Grey, and White respectively. Figure 4.20 shows an scheme of
this division along the lightness axis.
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Figure 4.20: Sigmoid functions are used to differentiate between the three achro-
matic categories.

Hence, the membership of the three achromatic categories on a given chromaticity
plane is computed by weighting the global achromatic membership (equation (4.32))
with the corresponding membership in the lightness dimension (equations (4.33)-
(4.35)):

Hey, (5'7 Qck) = /L%(ChCQ) "HAg, (I; eck)7 9<k<I1l, L;<I< Iita (436)

where ¢ is the chromaticity plane in which the sample is included and the values of
k correspond to the achromatic categories (see equation (1.21)). In this way we can
assure that the fuzzy constraint is fulfilled on each specific chromaticity plane. For
the ith chromaticity plane we have:

S e (=S @+ Y e (437)
k=1 k=1 k=n.+1

where n is the total number of colour categories (in our case, n = 11) and n.. is the
number of chromatic categories (in our case, n. = 8).

The second summation can be replaced by the membership functions of the three
achromatic categories according to equation (4.36):

n 8
D e () =D nei(5) + pa(er, ea) - pac, (1;00,)+
k=1

k=1 (4.38)

+ Hi}(cla 02) "HAc, (L 9010) + qu(Clv 02) “HAc, (Iv 9011)
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By definition,
(e ea) =1 =520, 1, (c1,c2) (see equation (4.32))

tac, (I3 0cy) + pac,, (I3 0cy,) + pac,, (I;0c,,) =1 (see equations (4.33)-(4.35))

Then,
n 8 8 )
D e ()= nei () + <1 = > ng, (e, 02)> 1=1 (4.39)
k=1 k=1 k=1

Hence, we assure that for any chromaticity plane we have:
n
nei®=1 i=1,...,Ng (4.40)
k=1

where Ny, is the number of chromaticity planes on the model.

4.5.2 Fuzzy Sets Estimation

Once we have defined the membership functions of the model, the next step is to
estimate their parameters. The parameter estimation will be done taking into account
the basic fuzzy property of unity-sum given in equation (4.40). To be able to do
this, the data set for the fitting process must be perceptually significant, that is,
the judgements should be coherent with results from psychophysical colour-naming
experiments and the samples should cover all the colour space. As we saw in the
previous sections, the data set from our colour-naming experiment provided the set
of fuzzy judgements, but the sampling of the colour space is not large enough to fit
the presented model. Hence, we need to build a new learning set.

Learning Set

To build a wider learning set, we have used the fuzzy colour category map proposed by
Seaborn et al in [124]. This colour map has been built by making some considerations
on the consensus areas of the Muunsell colour space provided by the psychophysical
data from the experiments of Sturges and Whitfield [135]. Using such data and the
fuzzy k-means algorithm, this method allows deriving the memberships of any point
in the Munsell space to the eleven basic colour categories.

In this way, we have obtained the memberships of a wide sample set and, af-
terwards we have converted this colour sampling set to their corresponding CIELab
representation. Our data set was initially composed of the 1269 samples of the Mun-
sell Book of Color [6]. Their reflectances and CIELab coordinates, calculated by using
the CIE D65 illuminant, are available at the web site of the University of Joensuu in
Finland [2].

In order to avoid problems in the fitting process due to the reduced number of
achromatic and low chroma samples, the set was completed with 18 achromatic sam-
ples (from Value=1 to Value=9.5 at steps of 0.5), 320 low chroma samples (for Values
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from 2 to 9, Hue at steps of 2.5 and Chroma=1), and 10 samples with Value=2.5
and Chroma—2 (Hues 5YR, 7.5YR, 10YR, 2.5Y, 5Y, 7.5Y, 10Y, 2.5GY, 5GY, and
7.5GY). The CIELab coordinates of these additional samples were computed with the
Munsell Conversion software available at [5].

Therefore, the total number of samples of our learning set is 1617. Hence, with
such data set we accomplish the perceptual significance required for our learning
set. First, by using Seaborn’s method we include the results of the psychophysical
experiment of Sturges and Whitfield and, in addition, it covers an area of the colour
space that suffices for our purpose.

Parameter Estimation

Before starting with the fitting process, the number of chromaticity planes and the
values that define the lightness levels (equation (4.11)) must be set. These values de-
pend on the learning set used and must be chosen taking into account the distribution
of the samples from the learning set. In our case, the number of planes that delivered
best results was found to be six and the values that define the levels were selected
by choosing some local minima in the histogram of samples along the lightness axis.
Figure 4.21 shows the samples histogram and the values selected. However, if a more
extensive learning set was available a higher number of levels would possibly deliver
better results.
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Figure 4.21: Histogram of the learning set samples used to determine the values
that define the lightness levels of the model.

For each chromaticity plane, the global goal of the fitting process is finding an
estimation of the parameters, 67, that minimises the mean squared error between the
memberships from the learning set and the values provided by the model:

Nec n
. ) 1 LC CL ) ]
v :argnél%’nn Zz :(/“L]Ck(sﬂejCk) _m’ltc)27 Jj=1--,Np (4.41)
’ P =1 k=1

where 67 = (éél,...,één ) is the estimation of the parameters of the model for
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the chromatic categories on the jth chromaticity plane, Hék is the set of parameters
of the category Cjy for the jth chromaticity plane, n. is the number of chromatic
categories, n., is the number of samples of the chromaticity plane, l‘]Ck is the mem-
bership function of the colour category Cj, for the jth chromaticity plane, and mi is
the membership value of the ith sample of the learning set to the kth category.

The previous minimisation is subject to the unity-sum constraint:

11
Sl (50L)=1, Vi=(,ci,c0) | L <I<I (4.42)
k=1

which is imposed to the fitting process through two assumptions. The first one is
related to the membership transition from chromatic categories to achromatic cate-
gories:

Assumption 1: All the chromatic categories in a chromaticity plane share the
same Elliptical-Sigmoid function which models the membership transition to the
achromatic categories. This means that all the chromatic categories share the set
of estimated parameters for ES:

%Scp = %scq and P(;p = fjcq, Vp,qge{l,...,n.} (4.43)

where n. is the number of chromatic categories.

The second assumption refers to the membership transition between adjacent chro-
matic categories:

Assumption 2: Each pair of neighbouring categories, C,, and C, share the param-
eters of slope and angle of the Double-Sigmoid function which define their boundary:

65" = ﬁg" and af" = fq — (g) (4.44)

where the superscripts indicate the category to which correspond the parameters.

These assumptions considerably reduce the number of parameters to be estimated.
Hence, for each chromaticity plane, we must estimate 2 parameters for the translation,
t= (tz,ty), 4 for the ES function, 6ps = (eq, €y, ¢, Bc), and a maximum of 2 x n,
for the DS functions, since the other two parameters of Ops = (o, oy, Bz, 5y) can be
obtained from the neighbouring category (equation (4.44)).

Hence, following the two previous assumptions, the parameters of the chromatic

categories at each chromaticity plane, éé‘k = (&, éjbsckﬁ%s), with k =1,...,8, are
estimated in two steps:
1. According assumption 1 we estimate the parameters of a unique ES function,

t and HAJES, for each chromaticity plane by minimising:

~ . Mep N ) 11 ‘
(,0%5) = arg min — > (ES(s;#,045) — > _mj})? (4.45)
055 Tep 524 k=9

where n., is the number of samples from the learning set in the jth chromaticity
plane, and m}, is the membership to the kth category of the ith sample for values
of k between 9 and 11, which correspond to the achromatic categories according
to equation (1.21).
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2. Considering assumption 2 allows estimating the rest of the parameters, 973 Se,

of each colour category by minimising the following expression for each pair of
neigbouring categories, C}, and C:

Nep

(Phse, Fpsc,) = arg  min 3 ((MJCP(S_;-; 0L, ) —mi)? + (s, (5502, ) —m
DSg,"DSg, i=1

(4.46)
where 6z, = (¥, 075, ,0ps)-

Once all the parameters of the chromatic categories have been estimated for all
the chromaticity planes, the parameters to differentiate between the three achromatic
categories, 04 = (0¢y,0c,,,0c,,) are estimated by minimising the expression:

ns 11

64 = arg min DY (nen (i 00,) —mi)? (4.47)
1=1 k=9

where n, is the number of samples in the learning set and the values of k£ correspond to
the three achromatic categories, that is, C9 = Black, C1o = Grey, and Cy; = W hite
(see equation (1.21)).

All the minimisations to estimate the parameters are performed by using the
simplex search method proposed in [84]. After the fitting process, we obtain the
parameters that completely define our colour-naming model and that are presented
and discussed in the next section.

4.5.3 Results

The essential result of this work is the set of parameters of the colour-naming model
that are summarized in table 4.15. Subscripts x and y, used in the model formulation,
are changed to a and b respectively in order to make parameter interpretation easier,
since parameters in this work have been estimated for the CIELab space.

The fitting error of the model to the learning dataset was of M AEy;; = 0.0168.
Table 4.16 shows the distribution of this total error through the different categories.

The M AE¢;; measure was also computed for a test dataset of 3149 samples. To
build the test dataset, the Munsell space was sampled at Hues 1.25, 3.75, 6.25 and
8.75, Values from 2.5 to 9.5 at steps of 1 unit and Chromas from 1 to the maximum
available with a step of 2 units. As in the case of the learning set, the memberships
of the test set that were considered the ground truth, were computed with Seaborn’s
algorithm. The corresponding CIELab values to apply our parametric functions were
computed with the Munsell Conversion software. The value of M AE;;; obtained was
0.0218 which confirms the accuracy of the fitting that allows the model to provide
membership values with very low error even for samples that were not used in the
fitting process.

To compute the M AFE,,,,;+sum measure, we have sampled each one of the six chro-
maticity planes with values from -80 to 80 at steps of 0.5 units on both a and b
axis, which means a total number of points of n, = 153600. The value obtained of

i
q

?)
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Achromatic axis

Black-Grey boundary tp, = 28.28 By = —0.71
Grey-White boundary tw = 79.65 Bw = —0.31
Chromaticity plane 1 Chromaticity plane 2
tqe = 0.42 eq = 5.89 Be =9.84 tq = 0.23 eq = 6.46 Be = 6.03
ty, = 0.25 ey, = 7.47 ¢ = 2.32 t, = 0.66 e, = 7.87 ¢ = 17.59
Qg Qp Ba B Qg ap Ba B
Red -2.24 -56.55 0.90 1.72 Red 2.21 -48.81 0.52 5.00
Brown 33.45 14.56 1.72 0.84 Brown 41.19 6.87 5.00 0.69
Green 104.56 134.59 0.84 1.95 Green 96.87 120.46  0.69 0.96
Blue 224.59  -147.15 1.95 1.01 Blue 210.46  -148.48  0.96 0.92
Purple -57.15 -92.24 1.01 0.90 Purple -58.48  -105.72  0.92 1.10
Pink -15.72 -87.79 1.10 0.52
Chromaticity plane 3 Chromaticity plane 4
to = —0.12 eq = 5.38 Be = 6.81 te = —0.47 e, = 5.99 Be =T7.76
ty, = 0.52 e, = 6.98 ¢ = 19.58 ty, = 1.02 e, = 7.51 ¢ = 23.92
Qg ap Ba B Qg ap Ba B
Red 13.57 -45.55 1.00 0.57 Red 26.70 -56.88 0.91 0.76
Orange 44.45 -28.76  0.57 0.52 Orange 33.12 -9.90 0.76 0.48
Brown 61.24 6.65 0.52 0.84 Yellow 80.10 5.63  0.48 0.73
Green 96.65 109.38 0.84 0.60 Green 95.63 108.14 0.73 0.64
Blue 199.38 -148.24 0.60 0.80 Blue 198.14 -148.59 0.64 0.76
Purple -58.24  -112.63  0.80 0.62 Purple -58.59  -123.68 0.76 5.00
Pink -22.63 -76.43  0.62 1.00 Pink -33.68 -63.30  5.00 0.91
Chromaticity plane 5 Chromaticity plane 6
tqe = —0.57 eq = 5.37 Be = 100.00 te = —1.26 e, = 6.04 Be = 100.00
ty = 1.16 e, = 6.90 ¢ = 24.75 t, = 1.81 ep = 7.39 ¢ =—1.19
Qq ap Ba B Qq ap Ba B
Orange 25.75 -15.85  2.00 0.84 Orange 25.74 -17.56 1.03 0.79
Yellow 74.15 12.27 0.84 0.86 Yellow 72.44 16.24 0.79 0.96
Green 102.27 98.57 0.86 0.74 Green 106.24 100.05 0.96 0.90
Blue 188.57 -150.83  0.74 0.47 Blue 190.05  -149.43  0.90 0.60
Purple -60.83  -122.55  0.47 1.74 Purple -59.43  -122.37  0.60 1.93
Pink -32.55 -64.25 1.74 2.00 Pink -32.37 -64.26 1.93 1.03

Table 4.15: Parameters of the Triple-Sigmoid with Elliptical centre model (angles
are expressed in degrees to make the results interpretation easier).

Red Orange Brown Yellow Green Blue

MAE 1.40 1.58 1.02 1.48 2.28 2.62
Purple  Pink Black  Grey White Global

MAE 2.21 2.22 0.43 2.00 1.23 1.68

Table 4.16: Results in terms of the MAE; (x1072) of the Triple-Sigmoid with
Elliptical centre functions for each one of the 11 colour categories considered. In the
last column, the global measure of error of the model.
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MAFE  nitsum = 6.41e — 04 indicates that the model provides a great fulfilment of that
constraint making the model consistent with the proposed fuzzy framework. Table
4.17 shows these values compared to the obtained by the previous proposed models.

Model MAEﬁt MAEunitsum

MGM 0.0393 0.8206
SGM 0.0281 0.3612
DSM 0.0304 0.1219
TSCM 0.0298 0.1135

TSEM 0.0168 6.41e-04

Table 4.17: Results obtained by the five models proposed up to now (Multivariate
Gaussian (MGM), Sigmoid-Gaussian (SGM), Double-Sigmoid (DSM), Triple-Sigmoid
with Circular centre (TSCM) and Triple-Sigmoid with Elliptical centre (TSEM)).

Hence, for any point of the CIELab space we can compute the membership to all
the categories and, at each chromaticity plane, these values can be plotted to generate
a membership map. In Figures 4.22 and 4.23 we show the membership maps of the
six chromaticity planes considered. In figure 4.22 each map is plotted in the centre of
its lightness level in the CIELab space. Figure 4.23 shows each map separately with
the membership surfaces labelled with their corresponding colour term.

As we did before, the model has also been evaluated in terms of the categorization
of the Munsell space. To evaluate the plausibility of the model with psychophysical
data, we compare our categorization to the results reported in two works of refer-
ence: the study of Berlin and Kay [27] and the experiments of Sturges and Whitfield
[135]. Figure 4.24 shows the boundaries found by Berlin and Kay in their work, su-
perimposed on our categorization. Samples inside these boundaries assigned with a
different name by our model are marked with a cross. As can be seen, there are a
total of 17 samples out of 210 inside Berlin and Kay boundaries with a different name.
The errors are concentrated on certain boundaries, namely, Green-Blue, Blue- Purple,
Purple- Pink and Purple-Red.

The comparison to Sturges and Whitfield results is presented in figure 4.25. In
Sturges and Whitfield experiment the samples labelled with the same name by all the
subjects defined the consensus areas for each category. Amongst these samples, the
fastest named sample for each category was its focus. These areas are superimposed
over our categorization to show that all the consensus and focal samples from Sturges
and Whitfield experiment are assigned the same name by our model.

The analysis done to our Triple-Sigmoid-Elliptical model (TSEM) was also per-
formed on some previous categorizations. These are obtained by Lammens Gaus-
sian model (LGM) [85], an English speaker presented by MacLaury (MES) in [96],
Seaborn’s Fuzzy Colour Category Map (FCCM) [124], and our previous best approach,
the Triple-Sigmoid with Circular centre model (TSCM). The results are summarized
in table 4.18 where it can be seen that the results of our TSE model equal the previ-
ous best of Seaborn’s non-parametric model (FCCM), but adding the advantages of
having a parametric model that have been previously discussed in section 4.1. Notice
that although the learning process of both models was based on data derived from
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Figure 4.22: Membership maps for the six chromaticity planes of the TSE model.
The planes are plot in the centre of each lightness level.
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Figure 4.23: Membership maps for the six chromaticity planes of the TSE model

plotted separately.
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Figure 4.24: Comparison between the TSE model’s Munsell categorization and
Berlin and Kay boundaries. Samples named differently by our model are marked
with a cross.
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Figure 4.25: Consensus areas and focus from Sturges and Whitfield experiment
superimposed on the TSE model’s categorization of the Munsell array. Each letter
corresponds to a category: r-Red, o-Orange, br-Brown, y-Yellow, g-Green, b-Blue,
p-Purple, k- Pink, bk-Black, gr-Grey, w- White. Samples marked with capital letters
are the focus.
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Sturges results, they are the most consistent with Berlin and Kay’s experiments and
are also better than the results of the English speaker’s categorization.

Berlin and Kay data Sturges and Whitfield data
Model Coincidences  Errors % Errors Coincidences  Errors % Errors
LGM 161 49 23.33 92 19 17.12
MES 182 28 13.33 107 4 3.60
TSCM 185 25 11.90 108 3 2.70
FCCM 193 17 8.10 111 0 0.00
TSEM 193 17 8.10 111 0 0.00

Table 4.18: Comparison of different Munsell categorizations to the results from
colour-naming experiments of Berlin and Kay [27], and Sturges and Whitfield [135].

4.6 Discussion

In this chapter we have proposed a parametric fuzzy model for colour naming based on
different membership functions. The use of a parametric model introduces several ad-
vantages with respect to the previous non-parametric approaches. These advantages
that have been discussed in section 4.1, include a reduction of the implementation
costs in terms of memory and computation time, a compact data representation,
simplicity for model analysis since each parameter has a meaning in terms of the
characterization of the data and, consequently, the model can be easily updated by
just tuning some of the parameters.

The model has been conceived for any colour space with two chromatic dimen-
sions and a lightness dimension, but in the present work the parameters have been
estimated for the CIELab space. After presenting a preliminary Gaussian model we
have proposed four different membership functions based on the product of sigmoid
functions. From the initial Sigmoid-Gaussian function, the model has been evolved
until defining the final model based on the Triple-Sigmoid with Elliptical centre (TSE)
function. Each proposed function has been analysed and in all the cases the next pro-
posal has been defined to solve the drawbacks detected in the preceding function.
Hence, the results obtained have progressively been improved until defining the final
model based on the TSE which obtains very good results in terms of the measures
defined.

Another aspect that must be evaluated when defining parametric models is the
number of parameters that define the model. Usually, a function defining a complex
form needs more parameters than one defining a simpler shape to be analytically
defined. However, this is not always the case. Although the TSE function has 10
parameters, the constraints imposed on the estimation process allows to define each
chromatic category by 2 parameters plus 6 parameters more that are the same for all
the categories of a chromaticity plane. Furthermore, the simplification on the model
for achromatic categories has implied a reduction of the total number of parameters
for the global model.
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Althouth the constraints imposed in the estimation process of the TSE parameters
also imply a reduction of the final number of parameters of the model, they were
defined to assure the fulfilment of the fuzzy framework where the memberships sum for
any point must be one. The result of such estimation process is the set of parameters
that define a model which achieves low fitting error for both the learning and test
datasets and also fulfils the unity-sum constraint. The evaluation of the model when
compared to previous results from the colour-naming experiments of Berlin and Kay,
and Sturges and Whitfield, demonstrates that the TSE model is plausible with these
psychophysical data. Table 4.19 summarizes the functions that have been proposed
in this chapter and the results obtained with each one.

As a final result of the model, the memberships to the 11 basic colour categories can
be obtained for any point in the CIELab space to provide a colour-naming descriptor
with meaningful information about how humans name colours. The model has many
applications on different computer vision tasks, such as image annotation, image
indexing and segmentation amongst others, where the inclusion of this high level
information might improve their performance. The proposed representation of colour
information could also be used as a more perceptual measure of similarity in colour
spaces, instead of the frequently used Euclidean distance.
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o o 9 99 0.0393 0.8206

Multivariate Gaussian
(MG) 3D-Gaussians

,,,,,, Py
“ > : 7 168 0.0281 0.3612

Sigmoid-Gaussian

(SG)

- BV[’X.,.
e

. : 6 147 0.0304 0.1219
Double-Sigmoid
(DS)
v
: s 8 189 0.0298 0.1135
Triple-Sigmoid with
Circular centre (TSC) 1D-Gaussians

' )
: o 10 114 0.0168 6.41e-04

Triple-Sigmoid with
Elliptical centre (TSE) 1D-Sigmoids

Table 4.19: Summary of the models defined in this chapter and results obtained.
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Chapter 5

Results and Discussion

Once the colour-naming model has been defined, the next step is to apply it to real
computer vision problems. As we have said previously in this thesis, the proposed
model has been designed on ideal conditions. Unfortunately, this will not usually
be the case in real applications. Hence, some previous considerations have to be
made. In this chapter we first briefly review the applications that the use of colour
names can have on computer vision. Next we detail the steps that must be performed
before applying the colour-naming model to real problems and analyse the viability
of the model for real problems. Finally, we propose some colour-naming descriptors
for images and the TSE model is tested on a real application of automatic annotation
for image retrieval.

5.1 Colour Naming in Computer Vision Applications

Although colour names are a high-level information that can be very useful for some
computer applications, they have not been widely used up to now. The essential
goal of colour naming in computer vision is to reduce the semantic gap between the
low-level features that can be extracted from an image and the high-level semantics
of humans. Colour naming has been used in some image retrieval works. Mojsilovié
et al. [104] have used colour names jointly with other high-level features on a retrieval
system that allows making queries on a semantic-friendly language. The Fuzzy Colour
Category Map of Seaborn et al. [124] has been used as similarity measure for CBIR on
the Pisaro system [123]. Gagaudakis and Rosin [57] also combined several features,
amongst them colour labels, for CBIR.

There are other simpler approaches based on defining a division of different colour
spaces such as HSV [93, 94], HSI [146, 147] or the Munsell space [13]. Another
proposed approach is based on the definition of a set of centroids and pixel clustering
by the nearest-neighbour rule. In these algorithms centroids have been defined on the
ISCC-NBS colour system [109] or the RGB space [119].

Although colour naming has normally been applied for general CBIR, colour names
have also been used on reduced domain applications such as indexing of flower images
[40] or paintings retrieval [131].

99
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Finally, in [18, 19, 17, 16, 141, 142] colour naming was applied to clothes de-
scription on a surveillance application. In [76] colour-naming information is used to
detect targets on a tracking application and in [102] colour naming is applied to image
segmentation.

5.2 Colour Naming in Practice

The use of the proposed colour-naming model for real computer vision problems
requires to consider some issues that were not considered in the definition of the
model. Firstly, the model has been fitted on a standard colour space such as CIELab
while images are normally represented on a device-dependent RGB space. Secondly,
the learning data was obtained in calibrated experiments under controlled conditions,
that is, without neither illumination changes nor context influences.

However, the working conditions in computer vision applications are normally
quite different. Firstly, the illumination rarely will be constant. Hence, the same
surface will have different RGB values on different images depending on the illuminant
under which the image is acquired. Secondly, in most images, the interactions between
the objects in the scene will make the colour induction mechanisms of the human
visual system to act. Thus, the same surface can be differently perceived on different
images depending on the image content. Finally, many applications must deal with
images from multiple sources which represent colour in its own device-dependent
RGB space. In most cases, a gamma correction to account for non-linearity of display
devices will also be applied to images. Hence, a transform from the device-dependent
colour spaces to the standard CIELab where the model is defined will be needed.

Hence, before applying the proposed colour-naming method, the input image
should be preprocessed. First, a calibration step will be performed to represent the
image on the sSRGB space (standard RGB [7]). Next, processes to account for colour
constancy and colour induction issues will be applied. At this point, it will be possible
to transform the image to the CIELab space and apply the colour-naming method
which will provide the colour-naming information needed for a specific computer vi-
sion application. Figure 5.1 shows a module diagram of all these steps.

5.2.1 Colour Space Transforms

Since the colour-naming model has been defined on the CIELab space and images
will be normally represented on a device-dependent RGB space, a transform between
both spaces must be performed to be able to apply the model. As it was presented in
section 1.2, CIELab is defined as a non-linear transform from XYZ values, and XYZ
is a linear transform from CIE RGB. As acquisition devices have different response
functions, the transform from devices’ RGB to XYZ will depend on each device.
Furthermore, a gamma transform to take into account the non-linearities of display
devices is normally applied to images.

Ideally, the image should be represented on a standard RGB space [137], e.g. the
default SRGB colour space [7], for which the transform to XYZ is already described.
In the case of the SRGB standard this transform is defined in two steps, as follows:
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Figure 5.1: Module diagram of the process steps to apply the colour-naming model
to real problems.

1. Obtaining linear RGB values by removing the gamma transform:
If R,G,B<0.04045

R =R/12.92
G = G/12.92 (5.1)
B’ = B/12.92

If R,G,B>0.04045

B (R + 0.055)2'4

1.055
G +0.055\**
¢ = (W) 52
5 _ (B+0.05 24
1.055

where R, G, and B are the values of the image normalized to [0, 1].

2. A linear transform to the XYZ space multiplying the linear (R’,G’, B’) triplet
by a 3 x 3 matrix:

X 0.4124 0.3576 0.1805 R
Y | = 02126 0.7152 0.0722 G’ (5.3)
Z 0.0193 0.1192 0.9505 B’
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The non-linear transform from XYZ to CIELab is done by applying the standard
equations [157] that were explained in section 1.2.2.

Unfortunately, sSRGB is not widely used yet and in most cases images will not be
represented in this standard space. Similarly as in [53] we propose to perform a pre-
processing step to transform the non-sRGB input image to a new one representing
the same image as having been taken by an sRGB camera in order to apply the
standard transform to XYZ and then to CIELab space. To do this, several situations
are possible:

Non-sRGB sensor responses are known

If the input images are not sRGB but the sensitivity curves of the sensor used
are known it is possible to compute the camera responses for a set of known colour
reflectances (e.g. a Macbeth Colour Checker). Then it is possible to compute a 3 x 3
matrix, M, that transforms RGB values of the non-sRGB sensor to sRGB values:

5T _ ~T
P, =M -p; (5.4)

where p; is a pixel from the non-sRGB image and IZ are the corresponding SRGB
values.

Least-squares regression is the simplest way to compute such a matrix. However,
other methods have been proposed [99, 72].

Another possibility is to directly map device-dependent RGB values to XYZ tris-
timulus values. This transform can be computed in the same way as in the previous
case. Several methods have been proposed [153, 47, 48].

Unknown sensor but control on acquisition is possible

When the response curves of the camera used to acquire the images are unknown
it will not be possible to use sensor information to compute the device-dependent
RGB values of the calibration set. However, if it is possible to acquire images of the
calibration set then it will be possible to apply the same methods described in the
previous case.

It will not always be possible to acquire images of the reflectances used as calibra-

tion set. However, if at least a white reference is available it will be possible to apply
a white-balance transform [150] as:

-T T

vy =D-p; (5.5)

where D is a diagonal matrix with Rsrap/Rdevs GsreB/Gdev, and Bspa i/ Bdev

in the diagonal. (RsraB,Gsres, Bsrap) are the sSRGB values of the white reference

and (Rgev, Gdev, Baev) are the device-dependent values of the white reference acquired
with the non-sRGB sensor.

In these conditions, another possibility is to fit the model’s parameters on the
CIELab space derived from the device-dependent RGB space. Obviously the error
of the transform will propagate to the CIELab values used on the learning step, but
as the CIELab values of samples to be named will also include the same error the
problem will not be critical. However, this solution implies to acquire the set of
samples used as learning-set on the parameter estimation step.
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Unknown sensor and no control on acquisition
If the acquisition conditions are unknown, i.e. uncalibrated conditions, and it is

not possible to acquire a set of calibration samples, some assumptions must be done.

One possibility is to apply a colour constancy method that makes assumptions
on the content of the image. Hence, Grey-world method [35] assumes the mean of
the image is grey, White-Patch Retinex [34] assumes the maximum values on the
image correspond to a white, gamut mapping methods [46, 52] assume the image has
a representative set of colours and the method based on nameability of Tous [140]
assumes that most colours in an image have a definite name.

Applying one of these approaches can reduce the error of assuming the sensor is
sRGB and applying the standard transform from sRGB to XYZ to the non-sRGB
values of the image.

In section 5.2.4 we consider the different possible working conditions and evaluate
the performance that can be expected on some of them. Different conditions are
evaluated for three different commercial cameras and the maximum performance of
the model for each camera and condition is evaluated.

5.2.2 Colour Constancy

As we saw in section 1.4.1 the same surface acquired under different illuminants can
be represented by very different RGB values. The visual system has mechanisms
that allow humans to disregard the effects of the illuminant and thus perceive colours
avoiding the illuminant influence. Hence, if we aim to obtain the same results as the
human visual system when the colour-naming model is applied on a real application,
the problem of colour constancy must be taken into account.

Previous works on computational models for colour naming have considered this
problem before applying the model on real images. Lammens [85] applied a modified
Von Kries rule [157] to solve the colour constancy problem. In this approach, the
value of a pixel, p; is modified as:

Pi = (5.6)
where p_i is the corrected pixel, b and @ are the black and white representatives of the
image.

This method can be seen as a scaling and a reorientation of the grey axis of the
image to align it to the theoretical grey axis, i.e. the axis from (0,0,0) to (1,1,1).
Mojsilovi¢ [103] used the same idea but with some modifications. In this case, the
image was previously median filtered to remove noise and the selection of black and
white representatives was done by choosing the nearest pixels to black and white
prototypes of her model, where distances were computed with the colour-namimg
metric defined.

In both cases the results are quite good although comparatives of colour constancy
algorithms [56, 71] have shown that the best results are obtained by gamut mapping
approaches [46, 52] and the colour by correlation method [50].
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In our case, to consider the colour constancy problem in the model tests we will
apply the white-patch Retinex method proposed in [56] that was based in the Retinex
version of [34]. This method, that has been chosen by its simplicity, assumes that
the image has a white surface which corresponds to the maximum response on each
of the channels of the image. This implementation of the Retinex algorithm finds
the maximum response in each of the three channels of the image, Rz, Gmaz, and
Biaa, and applies a diagonal transform to each pixel, p; in the form:

Ruyhite 0 0
T max
P = 0 %white 0 _p—;T (5.7)
0 "dw Buyhite

max

where p_i is the pixel under a reference illuminant, and R nite, Guwhite, and Bypite
are the RGB values of a white surface under the reference illuminant. In our case, a
perfect white with values (Rynite, Guwhites Bwhite) = (1,1,1) is assumed.

Figure 5.2 shows an example with synthetic images of a Macbeth Colour Checker
where the application of the colour constancy method improves the naming results.
In the figure, images 5.2(a) and 5.2(b) show the Macbeth Checker acquired under a
daylight and a blue illuminant respectively. The result of applying the white-patch
Retinex algorithm to image 5.2(b) is shown in figure 5.2(c). As can be seen, the blue
cast due to the illuminant has been removed to obtain an image very similar to the
image under daylight (image 5.2(a)). Images 5.2(d)-5.2(f) show the labels assigned by
the colour-naming method. As it can be observed, colour patches in the image under
the blue illuminant are very badly named, but the problem is solved if the method
is applied to the image obtained after applying the colour constancy method (image

5.2(c)).

5.2.3 Colour Induction

In section 1.4.2 we explained the induction effects that can appear in an image. As
we explained there, the same RGB value on an image can be perceived as being
of a different colour depending on the image content and the relations between the
colours in the image. As happened with the colour constancy problem, if we want to
assign colour names in a perceptual way, colour induction effects in images must be
considered previously to apply the colour-naming model.

In most previous works on computational colour naming, colour induction effects
have not been considered. However, one approach to this problem was included in
Mojsilovi¢ model [103], where the assimilation effect of human perception is modelled
as an adaptive low-pass filtering operation. The process starts with the LBG quanti-
zation [92] of the image followed by a computation of the local contrast of each pixel
which is used to detect edges in the image. The density of edges in the neighborhood
of each pixel is used to classify pixels in six classes: uniform, noise, contour, texture
edge, coarse texture, and fine texture. Finally, an averaging operation by means of
a convolution with a Gaussian kernel is done. The amount of averaging depends on
the type of region, being higher for textured regions and lower for uniform regions.
Contour and transition pixels are not smoothed.
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Figure 5.2: Example of the need to apply a colour constancy method before applying
the colour-naming model. (a) Image under daylight. (b) Image under a blue illu-
minant. (c) Image acquired under a blue illuminant after applying the white-patch
Retinex colour constancy method. (d)-(f) Colour names assigned by the colour-
naming model to images (a)-(c) respectively.

On the other hand, Seaborn’s Fuzzy Colour Category Map (FCCM) is also de-
fined for ideal conditions on the Munsell space and does not consider neither colour
constancy nor colour induction effects.

In our case, to consider the induction effects we will apply the method of Otazu
and Vanrell [112, 114, 113]. This method is based on a multiresolution decomposition
of the original image to build a perceived image, that is, an image where colour repre-
sentation has been modified accordingly with the colour changes that are produced in
the human visual system. In this model, colour changes are caused by the following
image properties:

e the relationship between an stimulus spatial frequency and the frequency of its
surround

e the relationship between the orientation of the stimulus and that of its surround

e the chromatic contrast variation of the stimulus surround

Depending on these properties, the colour of an stimulus can be sharpened with
respect to its surround (i.e. a colour contrast effect), or can be blurred with respect
to its surround (i.e. a colour assimilation effect).

To reproduce all these effects on an image, it is decomposed with a multiresolution
wavelet model and afterwards it is recovered with a modulation introduced by a
perceptual function that causes all these effects. Hence given an original image, I, we
can build its perceived image, Iperceived, by the following formulation:
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Iperceived = ZCSF( (w +U) + w; )+CT (58)

i=1

where, n is the number of frequency planes in which each image channel is decom-
posed, wf’ represents the coefficient decomposition at the plane of frequency 7 and
orientation k& (h:horizontal, v:vertical, d:diagonal), and ¢, is the residue term. The
Contrast Sensitivity Function, C'SF (i), causes the induction effects on the decompo-
sition, by combining the information on each pixel and its surround on this frequency
plane.

Figures 5.3 and 5.4 show two examples on synthetic images of the usefulness of
applying the colour induction model previously to the colour-naming method. In
figure 5.3 we show an example of an image with colour contrast effects. Without
applying the colour induction model (figures 5.3(a) and 5.3(c)), the same RGB values
from the rectangular regions in the sides of the images are assigned the same colour
name by the colour-naming model, although they are perceived as being of different
colour. The application of the colour induction model provides images in which the
RGB value of each pixel better resembles the perceived colour by a human observer.
After the application of the induction model (image 5.3(b)), the colour-naming model
is able to assign the same colour names as a human observer would do (image 5.3(d)).

PURPLE PURPLE BLUE PURPLE
(c) (d)

Figure 5.3: Example of the need to take colour contrast into account. (a) Original
image where contrast effects are present. (b) Image after applying the colour induc-
tion model. (c) and (d) Results of the colour-naming model applied to (a) and (b)
respectively. Colour labels under images (c) and (d) are the names assigned to the
rectangular areas on the sides of the images.
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In figure 5.4 we show an example of an image with colour assimilation effects. As
happened in the previous example, the small rectangular regions in image 5.4(a) have
the same RGB values. The colour naming model assigns the label ‘Blue’ to all these
regions (image 5.4(c)) although the regions on the right are perceived as green. After
applying the colour induction model (image 5.4(b)), the colour-naming model assigns
the labels that correspond to the colours actually perceived (image 5.4(d))

BLUE BLUE BLUE GREEN
(c) (d)

Figure 5.4: Example of the need to take colour assimilation into account. (a)
Original image where assimilation effects are present. (b) Image after applying the
colour induction model. (c) and (d) Results of the colour-naming model applied
to (a) and (b) respectively. Colour labels under images (c) and (d) are the names
assigned to the rectangular areas on the sides of the images.

5.2.4 Analysis of the Colour-Naming Model Under Uncali-
brated Conditions

As we explained in the previous sections, there are three issues, namely space trans-
forms, illumination variability and induction effects, that must be considered previ-
ously to apply the colour-naming model. The last two can be overcome, at least to
a certain extent, by the existing methods cited for each case. However, transforms
from device-dependent RGB spaces to CIELab will depend on the knowledge we have
about the sensor used to acquire the images.

In this section we analyse the performance we can expect from our colour-naming
model when it is applied to computer vision applications under some of the different
working conditions explained in section 5.2.1. To this purpose we use three commercial
cameras with known response curves to make the simulations: Sony DXC930 [12],
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Kodak DCS420[4], and Nikon D70 [1]. In order to isolate the effect of the space
transform from the effect of illuminant changes on the colour-naming performance,
we have white balanced the cameras used in the analysis, that is, cameras have its
white response normalised to (1,1, 1).

The three working conditions considered are:

Condition 1: Fitting the model on CIELab derived from camera RGB’s
We assume we are able to obtain (synthetically or acquiring images of the sam-
ples) the RGB values for the camera of the samples used in the learning step
of the colour-naming model. The CIELab values are derived from these RGB'’s.
Note that the model fitted in this way will only be useful for that camera and
that all the CIELab values will have a certain error.

Condition 2: Calibration step with a Macbeth Colour Checker
We assume we are able to obtain the RGB values for the camera of the Macbeth
Colour Checker and we are able to compute the calibration matrix to transform
RGB values of the camera to sSRGB values. Hence, an approximation of the
real CIELab values of the image can be obtained after that calibration step by
applying standard equations to transform from sRGB to CIELab.

Condition 3: Fully uncalibrated conditions
In this case it will not be possible to perform any calibration step and RGB
values of the camera are assumed to be SRGB and transformed to CIELab by
applying standard equations without any calibration step, with the error this
assumption involves.

To test the performance of the colour-naming model on the different cameras and
under the different working conditions, the model is tested on the data set used to
define the model (see section 4.5.2). Since we have the reflectances of these samples,
the device-dependent initial RGB values can be computed for the simulation. These
device-dependent RGB values are transformed to CIELab following the steps defined
for each condition. Then, for each sample, memberships to the 11 colour categories
are computed and a colour name is assigned by applying the maximum criteria (see
equation (1.20)). Memberships and names obtained under the ideal conditions in
which the model was defined are considered the ground truth to which the results
from different cameras are compared.

For each camera and each working condition, two measures are computed. First,
we compute the percentage of samples correctly named comparing with the ground-
truth. Second, the Mean Absolute Error, M AEy; (see equation 4.3), between the
memberships obtained on the CIELab space computed from the camera responses and
the ground truth. Note that although both error measures are related, they evaluate
different aspects of the problem. The MAFEy; value will give a precise measure of
the error in terms of membership to the different colour categories. The percentage
of correct naming will give us a measure of the impact of the previous error in the
final result of the colour-naming model. In many cases, a certain error in terms of
membership will not imply a change in the name assigned by the model. In these
cases, the model will work well although the M AEy;; is high. However, in samples
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close to a boundary a small change in the membership values can imply a change in
the name assigned. The results obtained are summarized on table 5.1.

Condition 1 Condition 2 Condition 3
Camera Naming Naming Naming
(%) MAEsg; (%) MAEsg; (%) MAEsg;
Nikon D70 95.09 0.0129 87.60 0.0215 71.06 0.0512

Sony DXC930 90.70 0.0153 80.10 0.0364 71.83 0.0520
Kodak DCS420 95.61 0.0105 80.62 0.0351 62.53 0.0822

Table 5.1: Results obtained on the analysis of the model under different working
conditions.

As can be seen on the table, the model is fully applicable for those cases when
control on acquisition is possible. In this case, the results obtained are of 90 — 95%
of the samples labelled with the same colour name as the model and the value of the
error (MAE;;;) is low. These values are the maximum performance that the model
obtains on these devices.

When we are able to make a colour calibration previously to the application of the
colour naming, the performance decrease depending on the camera. The best results
are obtained with Nikon D70 camera with 87.60% of the samples correctly named. In
this condition, the results will be conditioned by the accuracy of the calibration step.

In the third case, without calibration, the results that we can expect are con-
siderably lower than before with performance falling to values around 71% or 62%
depending on the camera used. Note that this is the worst possible case when RGB
values of the non-sRGB camera are transformed to CIELab as if they were sRGB.

From these results several conclusions can be extracted. The colour-naming model
can obtain good results in computer vision when it is applied to images for which we
know the response curves of the camera used, we have control on image acquisition or,
at least, it is possible to do a colour calibration step previously to the colour naming
application. The performance of colour naming on real images will be highly condi-
tioned to the camera used to acquire the images. For those cameras with response
curves similar to the sSRGB ones, a good calibration will be easier to compute.

Finally, on those applications where conditions are not controlled and no colour
calibration is possible, the performance of colour naming will decrease considerable
as it could be expected. However, in real images, it will be normally possible to
apply a colour constancy method that can reduce the error of working on fully uncal-
ibrated conditions. In this experiment this fact is not included because samples were
considered individually and computations were all done synthetically. However, the
important result of this analysis is that it provides a measure of the error order that
can be expected on each of the working conditions considered.

5.3 Global Image Colour-naming Descriptors

As we explained in Chapter 1, the direct application of a colour-naming model in
computer vision is image annotation for image retrieval. Given a colour sample, p,
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the colour naming model provides us with a membership value to each of the 11 colour
categories. However, if we aim to use the model to describe the content in an image,
global colour-naming descriptors for the whole image are needed.

In the last years some efforts to define global colour descriptors for images have
been done. The standard for multimedia content description MPEG?T [8] has defined
four descriptors for colour. These descriptors are:

e Dominant colour
o Colour distribution
o Global spatial distribution (colour layout)

e Local spatial distribution

In this section, we will propose three global colour-naming descriptors of image
content that will be used in the next section to apply the model to automatic image
annotation. With these descriptors we do not aim to propose an alternative to those
of MPEG?7, but to show the usefulness and potentiality of colour-naming information
for describing image colour, and particularly for automatic image annotation.

As we proposed in section 1.5, the colour-naming information in form of mem-
berships that the model provides can be represented by a simple colour descriptor,
CD(p), which is a vector of 11 components where each component is the membership
to one of the 11 colour categories (see equation (1.19)). The correspondence between
components and categories is ruled by equation (1.21).

Given an image, I, we can compute the colour-naming descriptor, CD(p;), for
each pixel, p;, with 0 < i < N — 1, where N is the number of pixels in the image.
Hence, for a given image we have a set of N colour descriptors (one for each pixel)
that provide a considerable amount of useful information to define global descriptors
of the image content in terms of colour names. Amongst all the possible, we propose
three simple descriptors that will be used on the application we will present later in
this chapter. The descriptors proposed are:

e Colour Naming Histogram (CNH)

The CNH descriptor, CNH(I), is a 11-dimensional vector where each compo-
nent, C N Hy(I), is the relative frequency of pixels in the image with its maximal
membership corresponding to category C:

CNHy(I) = "Lk (5.9)
N
where npy, is the number of pixels with maximal membership corresponding to
category Cy and N is the number of pixels in the image.

In this descriptor, each pixel only contributes to the bin corresponding to the
category for which the pixel has its maximal membership and the second and
subsequent maximal membership values are disregarded. The goal of this de-
scriptor is to capture the predominant colours in the different image regions of
the image.
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e Mean Membership Vector (MMYV)

The MMV descriptor, MMV (I), is a 11-dimensional vector where each compo-
nent, M MVj(I), is the mean of the membership to category C}, of all the pixels
in the image, that is:

N—-1
MMVi(I) =" CD#“’”, k=1,...,11 (5.10)

i=0
where p; is the ith pixel of the image and N is the number of pixels in the image.

In this descriptor, each pixel contributes to the descriptor with the memberships
to all the categories, no matter whether they are high or low. Hence, with this
descriptor it will be possible to obtain a more perceptual measure of the global
image content since no colour-naming information is disregarded.

e Predominant Colour (PC)
The predominant colour of an image is obtained by applying the decision func-
tion defined in equation (1.20) which chooses the maximum from a 11-dimensional
colour-naming vector. In our case, the colour-naming vector can be any of the
two image descriptors previously defined. Therefore, the PC descriptor is de-
fined as:

PC(I) =t | Emax = arg k_r{laxu{CDk(I)} (5.11)

)

max

where t, is the linguistic term to name the colour category Cj, and CD(I) is
an 11-dimensional vector containing colour-naming information from image 1.

This measure can be generalized to the M predominant colours by selecting the
list of M maximal values on the colour-naming vector.

Obviously, although the three descriptors have been proposed as global descriptors,
they can be used locally in any given region. Hence, given an image it can be divided
in several parts and descriptors for each part could be computed to easily derive the
colour layout in the image. However, this is out of the scope of this work and in next
section, descriptors are used globally.

5.4 Automatic Image Annotation for Image Retrieval

In this section we present the application of the colour-naming model on a real problem
of automatic image annotation for image retrieval. As we saw in Chapter 1, two kind
of techniques have been used in image retrieval. On one hand, the first systems
indexed and retrieved images based on a set of textual annotations that described the
image content. On the other hand, Content Based Image Retrieval (CBIR) systems
have computed low-level features from images and these values have been used to
index and establish similarity between them.

The growth of multimedia contents in the last decade, caused that annotating
by hand entire image databases became unfeasible. In this context, CBIR has been
given more attention in the last years due to the lack of robust automatic textual
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annotators. However, textual descriptors present important advantages over CBIR.
Firstly, queries in CBIR normally require providing the system with an image similar
to the one the user wants to retrieve. Hence, if a similar image to the desired one
is not available, results in CBIR can be unsatisfactory. Secondly, a query based on
natural language is easier to define than a query based on low-level features since it
allows to express more exactly what is desired by the user. This is the case of the
real application in which our colour-naming model will be tested.

5.4.1 Experiments

Age Fotostock is a photographic agency that manages image reproduction rights for
professional use in the corporate, editorial, advertising and design fields. The company
has a huge image database where each image is annotated by human operators with
a set, of textual labels describing information related to the image. The information
described includes very different topics such as colour, texture, objects, emotions,
acquisition conditions, place and others. In the system, there is not any ontology
defined and human operators use their own vocabulary to describe images. Searches
on the system are done through string matching between the user’s query and the
annotations of the whole database. Figure 5.5 shows an example of the annotations
attached to an image.

Air Fojtik Museum  Stone
Black Folk Nature Stony
Blue sky Grass Nobody = Summer
Buildings Green Open Sunny
Country Horizontal Outside  Three
Countryside House Red Village
Daytime Houses Roof White
Europe Iceland Skogar Wood
Exterior Island South Wooden

Figure 5.5: Example of the annotations attached to an image of Age Fotostock
database.

The company is interested in automating the process of image annotation (or
at least, a part of it) and, in this context, an automatic system of colour naming
would be very useful. In this section we present a first approach to this problem with
experiments on a reduced subset of the image database. Hence, the model will be
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tested on a real computer vision application where the working conditions will be far
from the ideal conditions under which the model was defined.

In the experiments, the annotations made by the operators will be used as the
ground truth and the annotations provided by the model will be compared to this
ground truth to evaluate performance of the model.

Before the presentation of the experiments, some considerations about this prob-
lem must be done:

e The images provided are in ‘jpg’ format and have low resolution.
e The database includes images from very different sources.

e The content of images includes a wide range of objects, situations and condi-
tions.

e Information about acquisition conditions of the images is not available.

e Most images are not completely annotated in terms of colour, that is, there are
images that do not have attached labels for all the colours in the image.

e Some colour labels attached to images correspond to very small areas of a colour
that is not predominant in the image.

e There are erroneous annotations, that is, labels corresponding to colours that
are not in the image.

Therefore, the model will be tested on fully uncalibrated conditions. Furthermore,
the presence of errors on the annotations will complicate the evaluation of the model
since, as we mentioned before, these annotations will be used as ground truth to
compare the results of our model.

To annotate images, the descriptors defined in the previous sections will be used.
The two global descriptors defined, the Colour Naming Histogram (CNH) and the
Mean Membership Vector (MMYV) will be compared in the experiments. These de-
scriptors will be used as input for the Predominant Colour (PC) descriptor to obtain
the labels attached to each image. The PC descriptor has been extended to the 5
predominant colour with the constraint that the returned labels must have a value of
the global descriptor (either CNH or MMV), higher than a threshold that in our case
has been set to 0.05, that is, the colour name represents more than 5% of the pixels
in the image.

At this point we must emphasize that the goal of these experiments are not to
propose an annotation method (actually the method used is very simple), but to test
the possibilities that the colour-naming model has of being applied to real problems
in computer vision.

The performance of the model on the experiments will be measured by the per-
centage of the annotations from the human operators that are also provided by the
colour-naming model. It would be interesting to compute the inverse measure, that
is, the percentage of model labels that have also been provided by human annotators,
but the fact that images are not completely well annotated makes it unfeasible to
compute such measure.
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Experiment 1

For this experiment, we retrieved 10 images from the database for each colour cat-
egory to build a test set of 110 images with their corresponding annotations. The
images selected from each query were the first 10 in the results retrieved from the
company database. From all the annotations, only those corresponding to the 11
colour categories were maintained. The rest (non-colour annotations and non-basic
colour annotations) were disregarded. Some images have associated more than one
colour annotation. The total number of colour annotations for the whole set is of
173 labels. The distribution of the annotations across colour categories can be seen
in table 5.2. As a query for each colour name is made, there are at least 10 annota-
tions for each colour category. In figure 5.6 some examples of the images used for the
experiment are shown.

Red Orange Brown Yellow Green Blue

Annotations 18 11 12 18 16 20
Purple Pink Black Grey White Total
Annotations 13 10 16 13 26 173

Table 5.2: Distribution of colour annotations in the set of images used in experiment

Figure 5.6: Examples of images in the set used for experiment 1.

The three global image descriptors defined in section 5.3 are used in this experi-
ment. The results obtained with the Colour Naming Histogram (CNH) and the Mean
Membership Vector (MMV) are compared. As we explained above, the selection of
colour names to annotate images is done by applying the Predominant Colour (PC)
descriptor to give a maximum of 5 colour terms. Images are assumed to be in SRGB
and no calibration step is done. The algorithms to consider colour constancy and
colour induction explained in sections 5.2.2 and 5.2.3 respectively are also tested for
both descriptors. Results are summarized in table 5.3.
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Descriptor
CNH MMV
None 80.92  81.50
Colour Constancy 82.08  82.08
Colour Induction 83.82 83.24

Col. Constancy and Induction 84.39  83.82

Table 5.3: Results for experiment 1. Percentages of database annotations also re-
turned by the model. The descriptors defined, Colour Naming Histogram (CNH) and
Mean Membership Vector (MMV), are tested after applying different preprocessing
steps.

As can be seen in table 5.3 the results for the different combinations of descriptors
and preprocessing algorithms are around 80-84%. The results obtained for the two
proposed descriptors are very similar, although the best performance is obtained with
the Colour Naming Histogram when colour constancy and colour induction algorithms
are applied previously to the colour-naming model.

The use of both the colour constancy and the colour induction algorithms improves
the results obtained when the model is applied without preprocessing. The best
results are obtained when both are used jointly. In this case, an improvement of 3%
is achieved with respect to the application of the model without preprocessing.

The annotations from the database that were not correctly assigned by the colour-
naming model have been separated by colours to analyse how errors are distributed
in the different categories. Table 5.4 shows the percentage of errors for each category
and for each method tested. The fact of having only 173 annotations makes that, in
some cases, small variations in the number of correct or wrong annotations imply high
changes in the percentages. Despite this fact, the table allows us to have a measure
of how well performs the model for each colour category. Thus, in the table it can
be seen that Red, Purple, Brown and White are the categories for which the method
has more errors.

In figure 5.7 some results are presented. For each image, the annotations in the
database and the ones provided by the model are presented. Pixels of the original
images have been labelled with a colour representing the colour category for which it
has maximum membership.

The analysis of the results showed that some of the errors of the model corre-
sponded in fact to incorrect annotations in the original database. Figure 5.8 shows
some of these problematic cases.

In some cases, the colour annotations that did not correspond to colours in the
image were mistakes of the human annotators (e.g. "White’ in Figure 5.8(a)). In other
cases, the colour terms did not describe colours in the image, but were related to the
image content. This is the case of annotations such as ‘red wine’ or ‘red sea’ (see
5.8(b)). Since searches in the company database are done by simple string matching,
these kind of images are also returned when a query with a colour name is done.
Another group of problematic annotations are those describing small areas of the
image that are important for the meaning of the image but are not predominant in
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CNH MMV

None CC CI CC+CI None CC CI CC+CI
Red 33.33 33.33 27.78 27.78 33.33 33.33 27.78 27.78
Orange 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00
Brown 25.00 16.67 25.00 33.33 16.67 833 33.33 33.33
Yellow 11.11  11.11 11.11 11.11 11.11 1111 11.11 11.11
Green 12,50 12.50 12.50 12.50 12.50 12.50 12.50 12.50
Blue 10.00 10.00 10.00 5.00 10.00 10.00 10.00 10.00
Purple 38.46 30.77 53.85 38.46 30.77 30.77 46.15 38.46
Pink 20.00 20.00 0.00 10.00 20.00 20.00 0.00 0.00
Black 6.25 6.25  0.00 6.25 12.50 12.50 6.25 6.25
Grey 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.69
White 34.62 34.62 23.08 19.23 34.62 34.62 23.08 23.08

Table 5.4: Percentage of errors in the model annotations for experiment 1 separated
by colours. Abbreviations used: CNH - Colour Naming Histogram, MMV - Mean
Membership Vector, CC - Colour Constancy, CI - Colour Induction

White

White Green
Orange Orange Blue Blue
Green Green Red Red
Yellow Yellow

Red Brown

Red Blue
Black Black
Yellow Green
White White

Figure 5.7: Examples of annotations provided by the model. Images on the right
of each original image show the colour that has been assigned to each pixel by the
model. Under each image, the annotations associated are presented.
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the image. This is the case of images with annotations such as ‘blue eyes’ (see 5.8(c)
and 5.8(d)).

Blue

Red
Yellow Blue
Orange Green
White Green

(a) (b) (d)

Figure 5.8: Examples of images with problematic annotations.

The main conclusion of this experiment is that the annotations available on the
database of Age Fotostock are not adequate to be considered the ground truth to
validate the model, although results obtained by the TSE model are near to 85%. At
least 9 out of the 173 annotations (5% approx.) on the test set are clearly incorrect and
correspond to colours that are not present in the images to which these annotations
are associated. The second conclusion is that the global colour-naming descriptors
defined are too simple to be able to annotate small regions that are important in the
image. To solve this problem, more complex descriptors should be considered in order
to be able to correctly annotate these regions.

Experiment 2

In this experiment, the 110 images used in experiment 1 were re-annotated by two
human observers in order to obtain a set of annotations better than the set of the
database. The two subjects in this experiment were asked to label each image with the
colour names of the regions that were important in the image and that described most
of its content. For each image, the intersection between the two sets of annotations
from the subjects was considered as the final annotations set of the image. As a result
of this experiment, a total of 241 colour annotations were obtained. Table 5.5 shows
the new distribution of annotations for the different categories. Figure 5.9 shows
some examples of images in which the annotations obtained in this experiment were
different from the ones in the company database.

Once a more complete set of annotations for the 110 images was available, the
percentage of image annotations that were also provided by the model was computed
for the two proposed descriptors and for the preprocessing algorithms as it was done
in experiment 1. The results obtained are summarized in table 5.6.

Ag it can be seen in the table, all the results have improved between 4% and 7%,
which agrees with one of the conclusions of experiment 1 that about 5% of the an-
notations in the company’s database are wrong. As in experiment 1, the inclusion of
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Red Orange Brown Yellow Green Blue

Annotations 20 12 18 24 27 27
Purple Pink Black Grey White Total
Annotations 13 14 24 17 45 241

Table 5.5: Distribution of colour annotations in the set of images used in the second
experiment.

ORIGINAL ANNOTATIONS FROM THE DATABASE

Grey Black White Purple
Red Pink

NEW ANNOTATIONS FOR EXPERIMENT 2

Grey Black White Purple
Pink Red Pink Blue
White Brown Red White

Green

Figure 5.9: Examples of images that were assigned different annotations from the
ones in the company’s database.

Descriptor
CNH MMV
None 87.97  87.97
Colour Constancy 89.63  88.80
Colour Induction 87.14  87.14

Col. Constancy and Induction 90.04  89.21

Table 5.6: Results for experiment 2. Percentages of database annotations also re-
turned by the model. The descriptors defined, Colour Naming Histogram (CNH) and
Mean Membership Vector (MMV), are tested after applying different preprocessing
steps.
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preprocessing steps taking into account perceptual issues improve the results in most
of the cases. In this experiment, when only the colour induction process is applied
before the colour-naming model, results slightly decrease from the ones obtained ap-
plying only the colour-naming model. However, when it is combined with the colour
constancy algorithm the results are the best ones for both descriptors. As the colour
constancy algorithm is applied before it corrects some effects in the images that make
the colour induction to fail.

As we did in experiment 1, the percentage of errors for the different categories
is showed in table 5.7. As can be seen in the table, the distribution of errors is
similar to the one from experiment 1 (see table 5.4) with small variations for most
categories. However, two of the categories that worst performed in experiment 1, Red
and White, show a considerable improvement. The two categories that obtain higher
error percentages are Brown and Purple, but it can be observed that these categories
considerable decrease its performance when the colour induction is applied. The same
problem appears for Green, but the error values are not so high as in the other two
categories.

CNH MMV

None CC CI CC+CI None CC CI CC+CI
Red 15.00 15.00 15.00 10.00 15.00 15.00 15.00 15.00
Orange 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Brown 16.67 11.11 27.78 33.33 16.67 11.11 33.33 33.33
Yellow 4.17 417 417 8.33 417 417 417 4.17
Green 3.70 3.70 14.81 14.81 3.70 3.70 14.81 14.81
Blue 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70
Purple 23.08 15.38 46.15 30.77 15.38 15.38 38.46 30.77
Pink 28.57 28.57 14.29 21.43 28.57 28.57 14.29 14.29
Black 4.17 4.17 0.00 4.17 8.33 8.33 4.17 4.17
Grey 11.76 5.88 11.76 11.76 11.76 11.76 11.76 11.76
White 22.22 20.00 15.56 13.33 22.22  20.00 13.33 13.33

Table 5.7: Percentage of errors in the model annotations for experiment 2 separated
by colours. Abbreviations used: CNH - Colour Naming Histogram, MMV - Mean
Membership Vector, CC - Colour Constancy, CI - Colour Induction

Finally, the analysis of the images for which the colour-naming method provided
wrong annotations, showed that some of the errors were caused by the presence of
shadows in the image. Figure 5.10 presents examples in which shadows cause wrong
annotations of image areas. Some algorithms to solve this problem have been proposed
[49, 55, 51] and it would be interesting to include a previous step to apply one of these
algorithms before applying the colour-naming model.

5.5 Discussion

In this chapter we have considered the issues related to the application of the TSE
colour-naming model to real problems in the computer vision field. To take into
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Figure 5.10: Examples of wrong annotations caused by shadows in images.

account these issues, we have defined a modular scheme following the proposal in
[148], with the preprocessing steps that must be performed before applying the colour-
naming model.

The fact that the model was defined using data obtained in psychophysical ex-
periments where colour samples are presented in very controlled conditions, implies
that some perceptual issues that will appear in real conditions must be considered.
As we explained in Chapter 1 the model was defined assuming that it would work on
perceived images where the effects of perceptual adaptation to the illuminant and to
the surround had been previously removed.

Another aspect that has been considered is the fact that the colour-naming model
was defined for the CIELab space while images will normally be acquired by an RGB
device and, therefore, a space transform must be done. Ideally, the RGB device should
provide standard RGB (sRGB) for which the transform to XYZ space is known.
However, in most of the cases images are represented on a device-dependent RGB
space and a previous calibration step is needed. Depending on the knowledge and
control on the acquisition conditions this calibration step can be done in different
ways.

In many cases, the acquisition conditions will be unknown and the colour-naming
model will work under uncalibrated conditions. This problem has been analysed in
an experiment simulating the different possible working conditions and for different
RGB sensors. The results of the experiment show that under calibrated conditions
the model can obtain good results working with different sensors. Obviously, under
completely uncalibrated conditions the performance of the model will decrease and it
will depend on the application whether the colour-naming results are acceptable or
not.

The model has been tested on a real problem of automatic annotation for image
retrieval. The goal of this test is to have a measure of the model performance on a
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real computer vision application. With this goal, we have defined the preprocessing
steps for images before the application of the colour-naming model. We assume that
images are represented in sSRGB and therefore no calibration step is done. To consider
the colour constancy problem the White-patch Retinex algorithm [34] is applied and
colour induction effects are solved with the model of Otazu and Vanrell [113]. The
solutions adopted for the problem of non-sRGB images and for colour constancy are
not the best option and obviously, the selection of approaches with better results
would probably improve the perceived image and therefore, the performance of the
colour-naming model.

Three colour-naming descriptors for images have been proposed and analysed on
the experiments to test the model on the automatic annotation task. The experi-
ments have been done on a set of 110 images. Although it would be desirable to
validate the model on a larger set of images the experiments allow extracting some
conclusions. Firstly, the two colour-naming descriptors used to derive the final colour
names (Colour Naming Histogram (CNH) and Mean Membership Vector (MMV)) ob-
tain similar results and none of them shows significant better results than the other.
Secondly, an additional previous step removing shadows from images is needed since
in some cases the presence of shadowed regions leads to wrong name assignments. Fi-
nally, two colour categories, Brown and Purple, obtain poor results in the experiment
for all the configurations evaluated.

In the experiments, the model achieves up to 90% of correct annotations. However,
the most interesting of the results is the fact that it obtains good results although some
of the preprocessing steps were not the best choices and the colour-naming descriptors
used are quite simple. These results are promising and point out future research lines
and applications. Hence, for example, if all the pixels of an image are assigned with
a membership value to the 11 colour categories, the information of the image can
be represented in a 11-dimensional space where each dimension is associated to one
of the 11 categories. This representation can be considered more perceptual since
each dimension will be related to one of the colour categories that humans perceive.
This representation could facilitate some computer vision tasks such as segmentation.
Figures 5.11 and 5.12 show two examples of this representation in 11 planes. In
both cases, the important regions of the image are almost perfectly segmented in the
channel corresponding to its colour.
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Yellow Green Blue Purple
Pink Black Grey White

Figure 5.11: Example of an image represented on a 11-dimensional space where
each dimension corresponds to a colour category (Example 1).
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Yellow

Pink Black Grey White

Figure 5.12: Example of an image represented on a 11-dimensional space where
each dimension corresponds to a colour category (Example 2).
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Chapter 6

Conclusions and further work

The main goal of this thesis was to propose a colour-naming model to reduce the
existing semantic gap between the low-level information that can be obtained from
images and the high-level semantics that human beings use. Hence, the main contri-
bution of this work is the definition of a parametric colour-naming model for digital
images. However, this thesis makes some additional contributions and opens several
research lines for future work. In this chapter we present some conclusions of the
work done and summarize the contributions of this thesis. Finally, some applications
of the defined model and directions for future work are proposed.

6.1 Conclusions

At the beginning of this thesis, we stated that the main goal of this work was to au-
tomate the colour-naming task in the frame of computer vision. The most important
result of this work is the definition of a parametric model to automate the colour-
naming task. The model has been posed on a fuzzy framework where each colour
category is modelled by a membership function. The categories considered are the
eleven basic colour categories defined by Berlin and Kay [27].

In order to obtain a colour-naming model providing the same colour names a
human being would assign, a colour-naming experiment was developed. The goal of
this experiment was to obtain a set of fuzzy colour-naming judgements that could be
used as learning set in a later fitting process to estimate the parameters of the models
for the CIELab space. The results of the experiment provided valuable information
to define a set of properties that membership functions of the model should fulfil.

After a preliminary approach using multivariate Gaussians as membership func-
tions, the subsequent proposals aimed to fulfil the properties defined from the obser-
vation of the experiment results. The functions proposed are based on the well-known
one-dimensional sigmoid function which has been extended to two dimensions and in
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which rotations and translations have been included. Our first proposal, the Sigmoid-
Gaussian function (SG), combined two oriented 2D-sigmoids with a Gaussian function.
The effect of the Gaussian multiplying the product of the two sigmoids caused that
this model could not be well fitted to some of the categories, such as Green, which
have a wide area of the colour space with membership 1. This fact implied high values
of the fitting error, M AE}; (see equation (4.3)), for some of the categories and a high
value of the unity-sum measure, M AFE ,;tsum (see equation (4.6)).

To solve this problem, individual rotation angles were included on each of the
two sigmoids and the Gaussian function was removed to define the Double-Sigmoid
function (DS). This model considerably improved the unity-sum constraint fulfilment
(reflected on an important reduction of the M AFE,;tsum value) but presented prob-
lems to correctly model the transition from chromatic categories to achromatic ones.

The Triple-Sigmoid with Circular centre function (TSC) included a Circular-
Sigmoid to improve the fitting of the model to the chromatic-achromatic boundary.
The results obtained slightly improved the ones from the previous model, but the
values of the error measures were still too high.

To obtain the final Triple-Sigmoid with Elliptical centre function (TSE) some
important modifications were included in the previous model:

e The Circular-Sigmoid was replaced by an Elliptical-Sigmoid in order to improve
the fitting to the chromatic-achromatic boundary.

e The 1D-Gaussian functions that allowed differentiating between the three achro-
matic categories (Black, Grey and White) were replaced by 1D-sigmoid func-
tions.

e The learning set used up to then was replaced by a wider set of samples where
membership values were derived from data of the psychophysical experiment
of Sturges and Whitfield [135] by applying the Fuzzy Colour Category Map of
Seaborn et al. [124].

e The fitting process was modified to include some constraints on the parameters
of the functions in order to achieve that neighbouring categories had in common
the parameters that defined their boundary.

The analysis of the results of the TSE model shows a good fitting to the learning
set and almost a perfect fulfilment of the unity-sum constraint. The categorization of
the Munsell space has been used to evaluate the model in terms of the names assigned
to a set of samples and the results of the TSE model equals previous non-parametric
best.

The final result of all this work is the table of parameters that define the member-
ship functions to the 11 basic colour categories. These parameters allow obtaining the
membership values to the eleven basic categories for any point of the colour space.

Once the main contribution of the thesis has been presented, the other contribu-
tions of this thesis are summarized in the following paragraphs:
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e Definition of properties for membership functions

The study of the results of the psychophysical experiment has allowed us to
define the set of necessary properties that any membership function should fulfil
(see section 4.3). The proposed TSE model fulfils the four properties, although
other functions fulfilling these properties could be found. The set of properties
that have been defined in this thesis can be a start point for future definitions
of different membership functions to model colour-naming memberships.

e Definition of a methodology for fuzzy colour-naming experiments

We have proposed a new methodology for colour-naming experiments. After a
review of the literature on psychophysical experimentation for colour naming,
we have defined a different methodology to obtain an adequate data set for the
final purpose of modelling the colour-naming task.

The results of the experiment have been validated by computing some usual
statistics in colour naming and comparing them to the same statistics from
previous experiments. With this analysis we have proved the equivalence of
the results obtained with our fuzzy methodology to the results from previous
experiments.

e Providing psychophysical data for fuzzy colour-naming research

The colour-naming experiment has provided us with a set of psychophysical
fuzzy colour-naming data . The most valuable of this data set is that it provides
fuzzy membership values to the eleven basic colour categories and therefore it
is suitable to be used as learning set or test set in a modelling process of the
colour-naming task.

This dataset has been made available online at [3] to the scientific community
in order to be used to model or validate future colour-naming models.

e Providing psychophysical data for colour constancy research

The colour-naming experiment developed was repeated with four additional
illuminants. The final result is a set of human colour-naming judgements under
five different illuminants. These data can be very useful for future research on
the relationship between colour naming and colour constancy.

e Definition of a tool for psychophysical analysis

The proposed model can be an useful tool for the analysis of psychophysical
colour-naming experiments. Up to this moment, colour-naming discussion in
psychophysics has been focused on areas or simpler statistics such as centroids.

With the TSE model, evaluation of results can be done in terms of the model
parameters instead of in terms of statistics that depend on the set of samples
used. This will allow correct comparison between experiments done with differ-
ent samples sets.

e Proposal of a modular scheme to apply the colour-naming model
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Since the colour-naming model has been defined under ideal conditions, per-
ceptual issues such as colour constancy and colour induction effects must be
addressed before applying the model to real problems. We have analysed these
topics and have proposed a modular scheme where colour constancy and colour
induction algorithms are applied to obtain a perceived image, i.e. an image
where influences of the illuminant and the surround have been removed. For
the moment, we have proposed simple existing methods to take into account
these problems before applying the colour-naming model, but more complex
methods could be applied in order to improve the results.

e Analysis of the model application to computer vision problems under
uncalibrated conditions

In order to evaluate the performance that the model can achieve under different
working conditions we have made simulations with three different cameras. This
analysis has been focused on evaluating the performance that can be expected
from the model working under uncalibrated conditions. The results show that
the model can provide good results on calibrated conditions but the performance
will decrease under uncalibrated conditions.

e Proposal of colour-naming descriptors for images

We have proposed three descriptors to describe images in terms of colour nam-
ing. Although the descriptors defined are quite simple, they have performed
well on the experiments done on a real application. The descriptors that have
been proposed are a global measure of the colour content in the image and can
provide useful information for several applications.

6.2 Future Work

The colour-naming model developed in this thesis is a further step on the automation
of the colour-naming task and the reduction of the semantic gap in computer vision.
Furthermore, this work opens several research directions for future work which are
presented in the following paragraphs:

e Psychophysical validation

It would be interesting to test the model with more psychophysical data obtained
with the proposed methodology for fuzzy colour-naming experiments. As the
first data set and the definition of the colour-naming model have determined
the areas of the colour space where confusion is higher, validation could be
focused in these areas which normally correspond to boundaries between colour
categories. Some preliminary experiments have already been done [115].

e Improving the TSE model

The proposed model can be improved in several points. Firstly, the division of
the colour space in different lightness levels should be removed. Observation
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of the membership maps of the TSE model (figure 4.23) allows us to detect
some tendencies in the displacement of the boundaries between colour categories
across lightness levels. Hence, the parameters of the membership functions
could be interpolated along the levels defined in the current model to obtain the
parameters of the membership functions for any given value of lightness.

Secondly, it would be also interesting to relax or even eliminate the first assump-
tion done in the fitting process to allow that the membership transition from
chromatic categories to the achromatic center was different for each category.

¢ Extension of the vocabulary

Although the 11 basic colour terms considered in the model are enough for many
applications, the vocabulary could be easily extended. The TSE model has
shown good efficiency and versatility to be fitted to membership values. Hence,
the inclusion of a new category in the model would only imply to estimate
its parameters and re-estimate the boundary parameters of the neighbouring
categories.

Furthermore, the vocabulary could also be extended by using the fuzzy infor-
mation provided by the model in different ways:

— Compound nouns could be used for samples with a membership of 0.5 to
two categories (e.g. samples with memberships 0.5 to Green and 0.5 to
Blue could be named as Blue-Green)

— Modifiers such as the ‘-ish’ suffix could be used on samples with a high
membership to a category and up to a certain membership to another (e.g.
samples with memberships 0.7 to Green and 0.3 to Blue could be named
as bluish Green).

— Luminance information could also be used to obtain some modifiers such
as ‘light’ or ‘dark’.

— New colour terms such as ‘beige’ or ‘turquoise’ by defining the membership
pattern that characterize these colours.

Finally, it would be interesting the inclusion of a category for skin colour which
is important to describe content of images that content human beings.

e Application of the model to computer vision problems

The proposed model has been tested on a real computer vision application of
image annotation. The model has obtained good results on a set of 110 images
that had been previously annotated by human operators of the company Age
Fotostock. However, a validation with a larger set of images should be done.

The test on the annotation application allowed us to detect that the model was
not robust to the presence of shadows in the images. Hence, a preprocessing
step accounting for shadows should be added in order to remove them from the
perceived image on which the colour-naming model is applied.

Apart from automatic image annotation, the model can be applied to other
computer vision problems such as the following:
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— Segmentation

The use of the information provided by the colour-naming descriptors de-
fined in Chapter 5 can be useful to obtain more perceptual segmentations
than current methods based on pixel distributions. The representation of
images in terms of the 11 memberships can be a first step to segment re-
gions as it has been shown in section 5.5 (see examples of figures 5.11 and
5.12).

— Content based image retrieval

Colour has been widely used as a feature for content based image retrieval.
Similarity between images has been usually done by using the histogram
of the image [138]. Although histograms are a good measure of the colour
content of the image, it does not have any information in terms of how
this content is perceived by humans. Hence, the pixels of a region can be
included in different bins of the histogram because the pixels values present
variability due to the geometry and illumination conditions, although a
human observer perceives them as being of the same colour. The use
of a histogram based on the colour names, similar to the proposed Colour
Naming Histogram (CNH) and the Mean Membership Vector (MMV) could
be useful to compare colour content of images in terms of the perceived
colour names.

— Tracking of regions Colour-naming information could also be used for
tracking of regions in image sequences. As in the previous applications,
this task has been previously based on pixel distributions [9] but with-
out taking into account how these pixels are perceived in terms of colour
names. Tracking of regions based on colour naming would also allow bet-
ter interaction with human users. Hence, for example, in a surveillance
application it would be possible to define actions in natural language such
as “follow the red car” or “find someone wearing a blue dress”.

e Colour naming and colour constancy

It would be interesting to study the relationship between colour naming and
colour constancy to evaluate up to what degree colour naming is affected by
changes in the illuminant.

The data set obtained under different illuminants could be very useful for this
purpose. As the inside of the booth where the experiment was developed was
white we can assume that colour constancy mechanisms of the human visual
system acted during the experiment. Hence, hypothetic differences in the colour-
naming responses obtained under the different illuminants would indicate that
human colour constancy not always is able to deal with them. Since some
of the illuminants used are very extreme it would be interesting to study the
limitations of human colour constancy.
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